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Abstract

In this document, we provide the additional supplementary information for the paper “CDDFuse: Correlation-Driven
Dual-Branch Feature Decomposition for Multi-Modality Image Fusion”. This file contains:

(I) The detail architecture for Share Feature Encoder (SFE) and Detail CNN Encoder (DCE) which is mentioned in Sec. 3.2.
(II) Detailed illustration to the training &testing datasets in Sec. 4.1.

(III) More qualitative comparison fusion results in Sec. 4.2.

(1V') Qualitative results for Downstream Infrared-Visible applications in Sec. 4.4.

1. Detail architecture for SFE and DCE

We illustrate the detailed architecture for Share Feature Encoder (SFE) module and Detail CNN Encoder (DCE) module of
CDDFuse framework in Fig. 1.

2. Detailed introduction to datasets

We adopt widely-used benchmarks MSRS [2], RoadScene [4], and TNO [3] for Infrared-Visible image Fusion (IVF),
MSRS [2] and M?FD [1] for Multi-Modality Object Detection (MMOD) and Multi-Modality Semantic Segmentation (MMSS),
and Harvard Medical Image Dataset for Medical Image Fusion (MIF), respectively.

» MSRS dataset': 1083 pairs for IVF/MMSS training and 361 pairs for IVF/MMSS testing.

* RoadScene dataset’: 50 pairs for IVF validation and 50 pairs for IVF testing.

» TNO dataset®: 50 pairs for IVF testing.

» M3FD dataset*: 3360 pairs for MMOD training, 420 pairs for MMOD validation and 420 pairs for MMOD testing.

* Harvard Medical Image dataset dataset’: 130 pairs for MIF training, 20 pairs for MIF validation and 136 pairs for MIF
testing.

*Corresponding author.

Thttps://github.com/Linfeng-Tang/MSRS
Zhttps://github.com/hanna-xu/RoadScene
3https://figshare.com/articles/dataset/ TNO_Image_Fusion_Dataset/1008029
“https://github.com/TinyuanLiu-CV/TarDAL
Shttp://www.med.harvard.edu/A ANLIB/home.html



(a) Share Feature Encoder & Restormer Block
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(b) Detail CNN Encoder & Detail Fusion Layer
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Figure 1. Detail architecture for Share Feature Encoder (SFE) module and Detail CNN Encoder (DCE) module of CDDFuse.

3. More qualitative comparison fusion results

More qualitative comparisons for Infrared-Visible image Fusion results are displayed in Figs. 2 and 3. Our method better
integrates thermal radiation information in infrared images and detailed textures in visible images. Objects in dark regions are
clearly highlighted, so that foreground targets can be easily distinguished from the background. Additionally, background
details that are difficult to identify due to the low illumination have clear edges and abundant contour information, which help
us understand the scene better.

More qualitative comparison for Medical Image Fusion results are shown in Fig. 4. CDDFuse can better preserve the
detailed texture and highlight the structure information than other methods.

4. Qualitative results for Downstream Infrared-Visible applications

The qualitative results for infrared-visible object detection and semantic segmentation are exhibited in Figs. 5 and 6
and Figs. 7 and 8, respectively. In object detection, CDDFuse can improve detection accuracy by fusing thermal radiation
information and highlighting the difficult-to-observe targets. Therefore, small objects can be better detected. For the
segmentation task, CDDFuse better integrates the edge and contour information in the source images, which enhances the
ability of model to perceive the object boundary, and makes the segmentation more accurate.
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Figure 2. Visual comparison for Infrared-Visible image Fusion.
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Figure 3. Visual comparison for Infrared-Visible image Fusion.
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Figure 4. Visual comparison for Medical Image Fusion.
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Figure 5. Qualitative results for infrared-visible object detection on M®FD dataset.
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Figure 6. Qualitative results for infrared-visible object detection on M®FD dataset.
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Figure 7. Qualitative results for infrared-visible semantic segmentation on MSRS dataset.
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Figure 8. Qualitative results for infrared-visible semantic segmentation on MSRS dataset.




