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1. Introduction

In this material, we present more experiment results and
qualitative comparisons to show the effectiveness of our
CODE and discuss the broader impact. From the visual re-
sults, one could see that CODE recovers image structures
better and image details finer, thus obtaining clearer restora-
tions.

2. Ablation for Aggregation Factors

In addition to the analysis experiments presented in the
main body of the paper, here we show more results about
r. and rs. The experimental settings are the same as other
analysis experiments, which are conducted on Setl2 with
noise level of 50. As shown in Tabs. 1 and 2, our method
is not sensitive to 7. and r,. Increasing r. or decreasing r;
only leads to slight performance drop.

Table 1. Ablation experiment for the aggregation factor r..

re | #Params FLOPs | PSNR | SSIM

2 | 18.67TM  25.84G | 27.92 | 0.8077
4 | 12.18M  22.44G | 27.93 | 0.8083
8 894M  20.75G | 27.90 | 0.8074

Table 2. Ablation experiment for the aggregation factor 7.

T | #Params  FLOPs | PSNR | SSIM
[16,8,4,2] | 9.5IM  22.10G | 27.91 | 0.8072
32,16,8,4] | 12.18M  22.44G | 27.93 | 0.8083
(64,32,16,4] | 17.40M  23.11G | 27.92 | 0.8079

3. Qualitative Results on Image Denoising

In addition to the qualitative results presented in the main
body of the paper, we show more results on grayscale and
color image denoising at noise level 15, 25 and 50. As

*indicates equal contribution.
Corresponding author.

shown in Figs. 1 to 5, CODE demonstrates better visual re-
sults on grayscale image denoising compared with the other
methods. To be specific, DnCNN [11] and FFDNet [12]
leave noises and artifacts in the images, DRUNet [10] and
SwinIR [4] obtain oversmoothed results and lose the de-
tails in the door and window. However, our CODE fully
recovers the structures of the door and the window while
preserving the textures better. Through careful observation,
one can find that our visual results are the closest ones to
GTs. Figs. 8 to 10 and Figs. 11 to 13 respectively show the
qualitative results of color image denoising on Kodak24 [1]
and McMaster [13]. From the figures, one can observe that
DnCNN and FFDNet have residual noises and distortions,
DRUNet and SwinlR smooth out the image details, thus
obtaining the blurry images. In contrast, our CODE ad-
equately removes the noises without introducing artifacts,
while achieving better restoration on details and textures.

4. Qualitative Results on Motion Deblurring

In this section, we show the qualitative results on motion
deblurring. Fig. 14 and Fig. 15 show the visual results on
GoPro [5] test set and HIDE [6] dataset, respectively. From
the figures, one can observe that DGAN [2] and DGAN-
v2 [3] have residual black streaks and artifacts, SRN [&],
DMPHN [9], and SAPHNet [7] obtain blurry results with
distortions. By contrast, our CODE recovers better struc-
tures and more details with much less residual blur in the
restored images. Such an observation is more obvious in
Fig. 14, where CODE obtains almost the same result as GT.

5. Qualitative Results on JPEG Compression
Artifact Reduction

Figs. 16 to 19 and Figs. 20 to 23 show the qualitative
results on JPEG compression artifact reduction at compres-
sion level 10, 20, 30, and 40. From the figures, one can ob-
serve that DnCNN has residual artifacts, DRUNet, SwinlR,
and CODE all obtain visually pleasant results with fine tex-
tures and structures, in which our CODE is much more ef-



ficient than the other two methods. Specifically, CODE has
~ 37% parameters and ~31% FLOPs of DRUNet, and only
~6% FLOPs of SwinlR. In other words, our CODE can
provide similar results with much less computation and/or
memory Costs.

6. Broader Impact

In this section, we discuss the impact of our CODE in
a broader vision. Generally, CODE is much more efficient
than other competing image restoration Transformers, and
thus has more opportunities to be deployed on mobile de-
vices. However, CODE is a general neural network and
might be trained with customized data and used for unau-
thorized purposes, such as watermark removal, which might
prejudice the rights of others. Moreover, the training and
testing of the model consume a lot of electricity, which
causes carbon emissions.
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Figure 1. Qualitative comparisons of grayscale image denoising (noise level 15) on the Set12 dataset.
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Figure 2. Qualitative comparisons of grayscale image denoising (noise level 25) on the Set12 dataset.
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Figure 3. Qualitative comparisons of grayscale image denoising (noise level 15) on the BSD68 dataset.
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Figure 4. Qualitative comparisons of grayscale image denoising (noise level 25) on the BSD68 dataset.
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Figure 5. Qualitative comparisons of grayscale image denoising (noise level 50) on the BSD68 dataset.
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Figure 6. Qualitative comparisons of color image denoising (noise level 15) on the CBSD68 dataset.
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Figure 7. Qualitative comparisons of color image denoising (noise level 25) on the CBSD68 dataset.
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Figure 8. Qualitative comparisons of color image denoising (noise level 15) on the Kodak24 dataset.
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Figure 9. Qualitative comparisons of color image denoising (noise level 25) on the Kodak24 dataset.
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Figure 10. Qualitative comparisons of color image denoising (noise level 50) on the Kodak24 dataset.
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Figure 11. Qualitative comparisons of color image denoising (noise level 15) on the McMaster dataset.
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Figure 12. Qualitative comparisons of color image denoising (noise level 25) on the McMaster dataset.
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Figure 13. Qualitative comparisons of color image denoising (noise level 50) on the McMaster dataset.
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Figure 14. Qualitative comparisons of motion deblurring on the GoPro test set.
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Figure 15. Qualitative comparisons of motion deblurring on the HIDE dataset.
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Figure 16. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 10) on the Classic5 dataset.
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Figure 17. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 20) on the Classic5 dataset.
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Figure 18. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 30) on the Classic5 dataset.
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Figure 19. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 40) on the Classic5 dataset.
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Figure 20. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 10) on the LIVEI dataset.
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Figure 21. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 20) on the LIVE1 dataset.
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Figure 22. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 30) on the LIVE] dataset.

Compressed DnCNN DRUNet SwinIR CODE (ours) GT

Figure 23. Qualitative comparisons of JPEG compression artifact reduction (compression level ¢ = 40) on the LIVEI dataset.
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