Appendix

7. Implementation Details

7.1. Architecture of diff encoder

The strides in diff encoder depends on the resolution of input frame and the size of output diff embeddings, shown as Tab. 7.

size of diff embeddings	resolution	strides				
$2 \times 40 \times 80$	640 imes 1280	(2,2,2,2)				
	480×960	(3,2,2)				
	960 imes 1920	(4,3,2)				
$2 \times 10 \times 20$	960 imes 1920	(4,4,3,2)				
Table 7. Architecture of diff encoder.						

7.2. Architecture of decoder

The architecture of decoders with CCU in different size is given in Tab. 8. C_{init} is the initial channel width of embeddings before feeding to decoder stages. Once feeding the $w_0 \times h_0 \times C_{init}$ embeddings into following stage, for example Stage 1 with stride s = 5, the size of output feature maps is $5w_0 \times 5h_0 \times C_1$, where $C_1 = \lfloor C_{init}/r \rfloor$ is the output channel width of Stage 1, r = 1.2 is the reduction rate for each stage and $\lfloor x \rfloor$ is the round down operator. K_c is the kernel size in CCU. The minimal and maximal kernel size in different decoder stages are 1 and 5, follow the setting in [3].

resolution	size	C_0	C_{init}	C_1	C_5	strides	K_c
640 × 1280	0.35	16	32	26	11	(5,4,4,2,2)	3
	0.75	16	48	40	18	(5,4,4,2,2)	3
	1.5	16	68	56	25	(5,4,4,2,2)	3
	3	16	95	79	37	(5,4,4,2,2)	3
480×960	3	16	110	91	42	(5,4,3,2,2)	1
960×1920	1.58	16	68	56	25	(5,4,4,3,2)	1
	3	16	92	76	35	(5,4,4,3,2)	1

Table 8. Architecture of decoder and CCU.

7.3. Experimental Details

In video compression, the network structure would be adjusted for different sizes and bpp, 1.58M with diff embedding in $2 \times 10 \times 20$ for 0.0146 bpp, 3M with diff embedding in $2 \times 10 \times 20$ for 0.0257 bpp and 3M with diff embedding in $2 \times 40 \times 80$ for 0.0517 bpp.

8. Additional quantitative results

8.1. Comparison for video interpolation on DAVIS Dynamic

Interpolation results between different methods on DAVIS Dynamic are shown in Tab. 12. We only compare

DNeRV with hybrid-based implicit methods [3] because H-NeRV is the current best implicit method for video representation.

8.2. The effects of different compression techniques

Ablations for various compression technique on UVG is given in Tab. 11. In future work, more advanced model compression methods would be used on the NeRV methods owing to the fewer redundance in the weights.

8.3. The effects of different compression techniques

For the evaluation of video compression, the results of VMAF [32] are demonstrated in Tab. 9.

Bpp	Beauty	Bospho	Honey	Jockey	Ready	Shake	Yacht	avg.
-----	--------	--------	-------	--------	-------	-------	-------	------

0.015	77.74	71.43	93.71	68.02	53.55	80.74	57.55	71.82
0.025	83.78	78.18	93.16	75.38	60.97	82.53	63.45	76.78
0.05	85.15	77.45	94.22	84.02	67.47	86.13	60.09	79.22
				0.00	1000 11	ua ·	11.00	

Table 9. Number of VMAF on 960 \times 1920 UVG in different Bpp.

8.4. Ablation results for optimizer

Results for optimizer ablations on Bunny with 0.35M size and 300 epochs is given in Tab. 10. Adan [50] is much more effective than Adam for larger learning rate.

9. Additional qualitative results

9.1. Visualization of video interpolation on UVG

Additional interpolation comparison on UVG is given in Fig. 8 and Fig. 9.

"Jockey" and "ReadySetGo" are two typical videos with large motion and dynamic scenes from UVG. In Fig. 8 and Fig. 9, we could find that the interpolations generated by DNeRV are obviously better than HNeRV. Some subtle spatial structures in interpolations of DNeRV, such as numbers on the screen or flagpole in the distance, remain nearly constant between adjacent frames.

9.2. Visualization of video interpolation on DAVIS Dynamic

Additional interpolation comparison on DAVIS Dynamic is given in Fig. 10, Fig. 11, Fig. 12 and Fig. 13.

DAVIS Dynamic is more difficult than UVG by reason of more dynamic scene changing and fewer frames. Although DNeRV outperforms HNeRV achieving the best results of implicit methods, but there is still much room for improvement. Once increasing the parameter quantity and utilizing task-specific modification, DNeRV could be competitive with state-of-the-art deep interpolation methods.

	learning rate	optimizer	50	100	150	200	250	300	
	5e-4	Adam Adan	24.97/0.7	769 27.86/0. 734 26.42/0	873 28.99/0. 823 27 65/0	905 30.10/0. 862 28.41/0	920 30.66/0.9 881 28 80/0	926 30.80/0. 390 28 91/0	927 893
	1e-3	Adam	26.36/0.8	329 24.67/0.	776 27.06/0.	841 27.71/0.	863 28.46/0.8	376 28.56/0.	878
	3e-3	Adam	25.53/0.7	789 28.23/0. 519 18.81/0	879 29.31/0. 548 19.31/0	905 30.03/0. 584 19.18/0	917 30.40/0.9 583 19 32/0 4	922 30.50/0. 591 19 36/0	924 594
	50 5	Adan	27.59/0.8	365 29.76/0.	918 30.59/0.	933 31.35/0.	941 31.78/0.9	944 31.89/0.	946
			Table 10.	Optimizer ab	lations on Bu	nny in PSNR/	SSIM.		
UVG			Beauty	Bospho	Honey	Jockey	Ready	Shake	Yacht
N/A 8-bit Qua 8-bit Qua 8-bit Qua	ant ant + Pruning ant + Pruning	(10%) 39. (20%) 33.	.00/0.972 .97/0.972 .38/0.971 .72/0.961	36.67/0.965 36.64/0.965 36.41/0.964 34.56/0.957	41.92/0.993 41.20/0.993 39.95/0.991 34.47/0.978	35.75/0.947 35.73/0.947 35.50/0.946 32.25/0.938	28.68/0.917 28.66/0.916 28.55/0.915 27.63/0.905	36.53/0.962 36.35/0.961 35.42/0.959 28.66/0.943	31.10/0.924 31.00/0.923 30.78/0.921 28.84/0.908

Table 11. Compression ablations on UVG in PSNR/SSIM.

9.3. Visualization of video inpainting on DAVIS Dynamic

Additional inpainting comparison on DAVIS Dynamic is shown in Fig. 14, Fig. 15 and Fig. 16.

Due to diff stream and CCU, DNeRV could model different regions of the frame more robustly, reduce the influence of masked regions. Besides, one limitation of DNeRV is that it couldn't model the detail texture well, and we will improve it in the future work.

9.4. Visualization of optical flow and difference stream

We conducted additional experiments on Bunny, following the same setting as Tab. 1a. The PSNR results are 29.13, 29.25, 28.84, and 28.70 in dB for the model sizes of 0.35M, 0.75M, 1.5M, and 3M. The optical flow is computed using Gunner Farneback algorithm by opency-python 4.5.3 and numpy 1.19.5.

The visualization comparison between optical flow and diff stream is shown in Fig. 7. It can be clearly observed that, although optical flow contains motion information, it loses huge other information in pixel domain. Saliency motion information in optical flow may be key in action recognition or motion prediction, but it cannot bring much help for pixel-level reconstruction tasks. For example, the fluctuation of grass or the change of skin brightness with the light may not help to recognize the rabbit's movements, but they are essential for reconstruction. Diff stream records all these information in unbiased way.

Videos	DN	eRV	HNeRV		
VIGEOS	test	test train		train	
Blackswan	23.89/0.712	28.98/0.874	21.67/0.589	28.76/0.865	
Bmx-bumps	22.34/0.696	25.96/0.784	19.24/0.549	30.32/0.883	
Camel	21.31/0.656	23.79/0.761	20.69/0.586	26.28/0.855	
Breakdance	22.28/0.858	27.26/0.937	20.40/0.841	29.53/0.958	
Car-round	20.42/0.725	28.91/0.931	16.92/0.560	28.23/0.919	
Bmx-trees	21.68/0.644	28.88/0.867	18.39/0.453	28.99/0.872	
Car-shadow	22.47/0.734	29.41/0.913	19.35/0.622	28.64/0.897	
Cows	20.89/0.629	25.24/0.837	20.45/0.590	24.71/0.815	
Dance-twirl	20.95/0.656	29.19/0.872	18.38/0.517	28.70/0.857	
Dog	24.91/0.683	29.55/0.857	21.99/0.457	29.85/0.868	
Car-turn	24.29/0.737	28.21/0.838	22.34/0.654	27.80/0.828	
Dog-agility	20.57/0.730	27.14/0.852	17.14/0.609	26.21/0.818	
Drift-straight	19.11/0.645	29.75/0.921	15.62/0.354	29.72/0.916	
Drift-turn	21.22/0.649	29.45/0.849	18.44/0.501	28.43/0.815	
Goat	20.46/0.554	28.63/0.908	18.22/0.327	27.69/0.891	
Libby	24.24/0.688	32.22/0.906	20.00/0.472	30.75/0.871	
Mallard-fly	21.81/0.610	28.25/0.809	19.23/0.397	27.26/0.788	
Mallard-water	21.24/0.687	27.55/0.882	17.60/0.429	29.23 0.911	
Parkour	22.13/0.680	27.32/0.879	18.82/0.488	26.77/0.863	
Rollerblade	24.91/0.850	30.52/0.915	21.56/0.782	29.92/0.907	
Scooter-black	17.15/0.633	27.26/0.926	14.37/0.416	26.33/0.901	
Stroller	23.32/0.718	32.36/0.923	20.47/0.559	31.68/0.905	
Average	21.89/0.690	28.45/0.875	19.15/0.534	28.44/0.873	

Table 12. Interpolation results on DAVIS Dynamic.

Figure 7. Comparison between optical flow and difference stream.

Ground Truth

DNeRV

HNeRV

Figure 8. Additional examples for video interpolation on Jockey.

 $Figure \ 9. \ Additional \ examples \ for \ video \ interpolation \ on \ ReadySetGo.$

Figure 10. Additional examples for video interpolation on Blackswan, Bmx-bumps and Camel.

Figure 11. Additional examples for video interpolation on Breakdance, Car-roundabout and Car-shadow.

Ground Truth

DNeRV

Figure 12. Additional examples for video interpolation on Dance-twril, Drift-straight and Drift-turn.

Figure 13. Additional examples for video interpolation on Mallard-fly, Parkour and Scooter-black.

Ground Truth

DNeRV

Figure 14. Additional examples for video interpolation on Blackswan, Bmx-bumps and Bmx-trees.

Ground Truth

DNeRV

Figure 15. Additional examples for video interpolation on Camel, Car-shadow and Car-turn.

Ground Truth

DNeRV

Figure 16. Additional examples for video interpolation on Goat, Mallard-water and Stroller.