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Algorithm 1 Proposed Knowledge Truncation for Few-shot Image Generation

1: Input: target samples X, number of total iterations N, number of warmup iterations Nw, interval for filter importance
estimation T, Conv filters of the model W, FI of the filter F(W), quantile of filter importance q(W), quantile threshold
for filter that is selected for pruning tl, threshold for filter that is selected for preserving th, total pruning rate p%.

2: Initialize with pretrained GAN: Gt ← Gs and Dt ← Ds.
3: for iteration = 1; iteration ≤ Nw; iteration++ do
4: Update the discriminator Dt given X, via Eqn. 1 # warmup for Dt

5: end for
6: for iteration = Nw + 1; iteration ≤ N; iteration++ do
7: If iteration%T = 0 :

Estimate F(W) via Eqn. 2;
Preserve W if th ≤ q(W);
Fine-tune W if tl ≤ q(W) ≤ th;
Prune W if q(W) ≤ tl;
Update the operation of W in Memory Bank. # size of the Memory Bank ∼ 5,000

8: ELSE
Extract the operation of W in Memory Bank;
Update model via Eqn. 1.

9: end for
10: Output: The adapted GAN

A. Pesudo-code of our proposed method
Here, we describe the proposed method in algorithmic format. We use the generator G for example, but the same opera-

tions are also applied to the discriminator D during adaptation. As mentioned in Sec. 5.1 in the main paper, we use Fisher
Information (FI) as the measurement for importance estimation in main experiments, and we use the same notation in the
algorithm. We summarize the proposed method in Algorithm 1.

B. Pseudo-code for implementing Intra-LPIPS
Here we describe the implementation details of Intra-LPIPS, the diversity evaluation method proposed in [14]. We follow

prior works [14,25,26] to apply Intra-LPIPS as an additional metric to evaluate the diversity of generated images by different
adapted GAN models. To make it easy to understand, we summarize the pseudo-code of Intra-LPIPS in Algorithm 2. A
small value of Intra-LPIPS indicates that the generated images are more close to few-shot target samples.

C. A brief description of Importance Probing (IP)
In the main paper, we apply IP, a modulation based method that estimates the filter importance for target adaptation

proposed in AdAM [25], to determine the filters importance for target adaptation. We discover that the filters with least
importance for adaptation are highly correlated with the knowledge that is incompatible to the target domain.

In this section, we briefly discuss the implementation of IP. We refer the readers to [25] for more details. In IP, for each
filter in the generator W, they generate a new filter M with the same dimension as W to modulate W. Then, the modulated
filter W

′
can be written as follows:

W
′
= W ⊙ (J+M), (1)

where J is the all-one matrix, ⊙ indicates the Hadamard product. Then, they adapt the modulation matrix W
′

to target
domain for 500 iterations (called “probing”) and only update M during the probing stage. After that, they use the importance
(estimated) of modulation matrix M as approximation of importance for the original filters W.

In contrast to IP, we directly estimate the filter importance for adaptation by leveraging on-the-fly gradient information
during training (therefore no probing stage). The results in Table 2 in the main paper shows we can achieve comparable
performance even without our proposed knowledge truncation method.

D. Additional experiment details
Here we provide additional details to help reproduce our results.
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Algorithm 2 Pseudo-code of Intra-LPIPS

1 # Input: 1. Generated images X=[x1, ..., xn];
2 # 2. Suppose we have 2-shot target samples with cluster center: c0, c1;
3 # 3. Cluster_0, Cluster_1 = [], []
4 # Output: Avg Intra-LPIPS over 2 clusters
5 # ------------------------------------------- #
6 # Step 0. Define the LPIPS distance function (Zhang et al.)
7 import lpips
8

9 lpips_fn = lpips.LPIPS(net=’vgg’) # default setup
10

11 # Step 1. Assign generated images to the cluster with smallest LPIPS distance to the cluster center
12 for X[i] in X:
13 dist0 = lpips_fn(X[i], c0)
14 dist1 = lpips_fn(X[i], c1)
15 if dist0 < dist1:
16 Cluster_0.append(X[i])
17 else:
18 Cluster_1.append(X[i])
19 # ------------------------------------------- #
20

21 # Step 2. Compute Intra-LPIPS
22 lpips_dist = []
23 While not done: # randomly sample image pairs
24 for img_i, img_j in Cluster_0:
25 lpips_dist.append(lpips_fn(img_i, img_j))
26 for img_i, img_j in Cluster_1:
27 lpips_dist.append(lpips_fn(img_i, img_j))
28 return lpips_dist.mean()
29 # ------------------------------------------- #

Code Implementation. For GAN dissection experiments and analysis, we follow their implementation and use the official
repo. In main experiments, following prior SOTA methods [14, 25, 26], we use StyleGAN-V2 as GAN architecture for a fair
comparison. The implementation is from this repo. We additionally use the ProgressiveGAN [8] to validate our proposed
analysis and method, using the code base from Karras et al. [8]. For performance evaluation, we use the tool (e.g., to compute
FID) used in [4]. During adaptation, we strictly follow the default hyperparameters as prior works [14, 26]. Before the main
adaptation, there is a warmup stage where we only update Dt for a few iterations (e.g., 250 in our experiments) to let the
Dt aware of the target domain information to have a better estimation of the filter importance for the target adaptation.
We evaluate the filter importance for adaptation every 50 iterations. Nevertheless, we found our proposed method is not
very sensitive to the choice of these hyperparameters. We use batch size 4 and an initial learning rate 0.002 (with Cosine
Scheduler in PyTorch [15]) in all experiments, similar to prior works [14, 25, 26]. We use images with resolution 256 x 256
for adaptation.

Datasets. In main paper, we follow prior works [13, 14, 25, 26] in the choice of source and target datasets for adaptation.
To make a fair and comprehensive comparison, we use FFHQ [10] as source domain. In this supplementary material, we
additionally use LSUN Church [23] as source domain for visualization. We also include more target datasets for adaptation,
e.g., face paintings [5, 18, 22], Haunted Houses or Palace [6]. We perform 10-shot adaptation in most setups. Nevertheless,
we also evaluate our method given different number of target training samples, see results in Table S4.

Implementation details of pruning EWC and AdAM. In literature, EWC [13] and AdAM [25] proposed different
criteria to preserve source knowledge by identifying parameter importance. EWC (Li et al.) applied Fisher Information (FI)
to measure parameter importance to the source domain. They then penalize the change of parameters during adaptation,
weighted by the importance of the parameters: if a parameter is deemed to be important, it will be penalized more given
the same change. AdAM proposed a modulation based method to evaluate the parameter importance for adaptation, see
details in Sec. C. Therefore, in Table 1 in the main paper, we propose to prune least important filters using the importance
measurement proposed in their original works, and empirically we observed the improved FID score of the generated images,
which implies the effectiveness and generalizability of our proposed method.
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Figure S1. Additional GAN dissection results using AdAM. Note that in AdAM fine-tuning is applied during adaptation from Gs to Gt to
update these low importance filters. However, we observe that incompatible knowledge (tree, building, grass) remains in the same filters
in Gt after fine-tuning.
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Figure S2. Additional GAN dissection results using EWC. Similar to AdAM, in EWC fine-tuning is applied during adaptation from Gs to
Gt to update these low importance filters. However, we observe that incompatible knowledge (tree, building, grass) remains in the same
filters in Gt after fine-tuning.
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E. Additional GAN dissection results
Additional GAN dissection results for AdAM. In Figure 2, we use IP to estimate the filter importance, therefore we use

AdAM as the adaptation method for analysis. In this section, we provide additional GAN dissection results as supplement to
Figure 2 in the main paper.

Additional GAN dissection results for EWC. Since EWC [13] also proposed parameter importance estimation method
for FSIG adaptation, it is naturally to validate our findings in Sec. 3 with EWC method as well. In this section, we additionally
include EWC for GAN dissection, and we note that we have similar observations as Sec. 3 in the main paper.

The parameter (filter) importance estimation criteria of AdAM and EWC can be found in Sec.D. The detailed additional
visualization results can be found in Figure S1 (AdAM) and Figure S2 (EWC).

F. Ablation Study: The impact of high-importance filters
In the main paper, we emphasize our contributions of investigating the incompatible knowledge transfer, its relationship

with the least important filters, and the proposed method to address this unnoticed issue for FSIG. Besides knowledge trun-
cation, following prior works, we also preserve useful source knowledge for adaptation. Specifically, we preserve filters that
are deemed important for target adaptation by freezing them. We select the high-importance filters by using a quantile (th,
e.g. 75%) as a threshold. See Algorithm 1 for details. In this section, we conduct a study to show the effectiveness and impact
of preserving different amount of filters that are deemed to be most relevant for target adaptation, the results are in Table.
Note that we do not prune any filters in this experiment.

Table S1. We preserve different amount of filters during adaptation and evaluate the performance of adapted generators. We do not prune
any filters (i.e., tl = 0%) in this experiment. The experiment setups are the same as Table 1 in the main paper. th is the quantile that we
start to preserve filters. e.g., if th = 90%, we only preserve 10% filters (see Algorithm 1 for details).

th 30% 40% 50% 60% 70% 80% 90%
Babies 47.55 47.42 46.54 49.19 51.09 52.00 67.33
AFHQ-Cat 90.13 69.64 69.13 65.92 57.02 57.27 60.56

As shown in Table S1, varying amounts of filters for preservation do in fact increase performance in different ways. In
practice, we select th = 50% for FFHQ 7→ Babies and th = 70% for FFHQ 7→ AFHQ-Cat, and this choice is intuitive: for
target domains that are semantically closer to the source, preserving more source knowledge might improve the performance.

G. Ablation Study: Effectiveness of dynamic filter importance estimation
In the main paper, our proposed method includes a dynamic filter importance estimation scheme (denote as “dynamic”).

In contrast to prior work [13, 25] that evaluate the parameter importance only once before the adaptation stage (denote as
“static”), we regularly estimate the filter importance for target adaptation every certain iterations (e.g. 50 iterations in our
experiments). In this section, we conduct a study to show the effectiveness of the proposed dynamic importance estimation
scheme (compared to the “static” estimation scheme) and the results are shown in Table S2.

H. Ablation Study: Additional importance measurement
Evaluating the importance of weights in generative tasks is still underexplored. In the main paper, we follow some

prior works [1, 13] to use the Fisher Information (FI) as the measurement for importance estimation and obtain competitive
performance across different datasets (See Table 1 in the main paper). Nevertheless, there could be different ways to evaluate
how well the obtained weights given the adaptation task. In literature, Class Salience [17] (CS) is used as a tool to estimate
which area/pixels of a given input image stand out for a specific classification decision, and it is similar to FI that leverages
the gradient information. Therefore, we note that CS could have a connection with FI as they both use the knowledge encoded
in the gradients for knowledge importance estimation.

We perform an experiment to replace FI with CS in filter importance measurement and compare with prior works. Note
that, in [17], CS is computed w.r.t. input image pixels. To make CS suitable for our problem, we modify it and compute CS
w.r.t. different filters by averaging the importance of all parameters within a filter to calculate the importance of that filter.
After that, the same as main paper, we preserve the filters that are deemed to be salient for target adaptation by freezing
them, prune the filters with least CS value and fine-tune the rest of filters, and we regularly evaluate the filter importance.
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Table S2. In this experiment, we study the effectiveness of the proposed dynamic framework for knowledge truncation and preservation.
In AdAM, they propose a modulation based method (see details in [25]) which is static, i.e., they conduct one-time filter importance
identification before the main adaptation stage. To show the effectiveness of the proposed dynamic framework for FSIG is better than its
static counterpart proposed in [25], we conduct a study and show results in below. Note that we modify the original AdAM such that it
freezes the important parameters rather than modulating them, hence we have a more direct comparison. We use the same experiment setup
as Table 1 in the main paper for fair comparison.

Method FFHQ→ Babies FFHQ→ Cat
FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)

TGAN [19] 101.58 0.517 64.68 0.490
EWC [13] 79.93 0.521 74.61 0.587 {static}
AdAM [25] {static, modulation, w/o prune} 48.83 0.590 58.07 0.557
AdAM {static, modulation, w/ prune} (Ours) 43.12 - 53.94 -
AdAM {static, freezing, w/o prune} 50.81 0.581 61.60 0.559
AdAM {static, freezing, w/ prune} (Ours) 46.87 - 57.56 -
Ours {dynamic, freezing, w/prune} 39.39 0.608 53.27 0.569

The results in Table S3 are obtained with our proposed method using FI and CS as the measurements for filter importance
estimation.

Table S3. In this experiment, we apply different measurements (i.e., FI and CS) for filter importance estimation and compare with state-
of-the-art methods. The experiment setup is the same as Table 1 in the main paper. We evaluate the performance under different source →
target adaptation setups where source and target domains have different proximity.

Method FFHQ→ Babies FFHQ→ Cat
FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)

TGAN [19] 101.58 0.517 64.68 0.490
EWC [13] 79.93 0.521 74.61 0.587
AdAM [25] 48.83 0.590 58.07 0.557
Ours w/ Class Salience 39.95 0.607 56.46 0.574
Ours w/ Fisher Information 39.39 0.608 53.27 0.569

As can be observed in Table S3, our proposed method can be applied with different measurements for importance esti-
mation. Meanwhile, we note that a good FID score does not necessarily infer to a good diversity of generated images from
the obtained generator [20]. Compared to prior works, our proposed method can consistently achieve a good trade-off of
performance (between FID and intra-LPIPS) of the adapted models across different adaptation setups.

I. Additional qualitative results
Few-shot adaptation with additional setups. We provide qualitative results with additional adaptation setups to show

the generalizability of our proposed method. Specifically, we visualize the generated images before and after adaptation. We
use the same experiment setups as in the main paper and 10-shot target samples for adaptation. As results below, since our
proposed method reliably removes the filters that are deemed to be incompatible with the target domains, there is not much
incompatible knowledge transferred to the generated images. Meanwhile, we show that the generated images are diverse
and high fidelity, as we also preserve knowledge important for target adaptation:

• FFHQ 7→ Sketches: Figure S3

• FFHQ 7→ Sunglasses: Figure S4

• FFHQ 7→Metfaces: Figure S5

• FFHQ 7→ Raphael’s Paintings: Figure S6

• FFHQ 7→ Amedeo-Modigliani’s Paintings: Figure S7
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• LSUN Church 7→ Haunted House: Figure S8

• LSUN Church 7→ Palace: Figure S9

10-Shot  

Sketches

  Gs

Ours

(Pretrained)

Figure S3. Additional FSIG results with FFHQ 7→ Sketches.

10-Shot  

Sunglasses

  Gs

Ours

(Pretrained)

Figure S4. Additional FSIG results with FFHQ 7→ Sunglasses.

Interpolation in the latent space. In our methods, the MLP layers in the generator are not tuned. In Fig. S10 , we
show the semantic manipulation results of our target model that it facilitates editing applications. We follow GenDA [21]
to linearly interpolate between two different latent codes after few-shot adaptation and visualize the intermediate generated
images, which are still of high quality.

Comparison with SOTA on additional target domains. The discussion and results are in Figure S11.

J. Additional quantitative results
FSIG with different number of shots. In the main paper, we mainly focus on the adaptation setup where we have only

10-shot samples for adaptation. In this section, we comprehensively evaluate the proposed method given different number of
target training samples. The results are in Table S4.

Evaluation on additional dataset. We note that we have evaluate our method and compare with SOTA methods compre-
hensively in the main paper, see Table 1 and Figure 4. Here, we include additional results of FFHQ 7→ Sketches [18]. The
results are included in Table S5.
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Figure S5. Additional FSIG results with FFHQ 7→ MetFaces.
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Figure S6. Additional FSIG results with FFHQ 7→ Raphael’s paintings.
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Figure S7. Additional FSIG results with FFHQ 7→ Amedeo-Modigliani ’s paintings.

Additional evaluation metric. We note that we evaluate our proposed method via different quantiative metrics (FID,
Intra-LPIPS) across six different datasets, and achieve competitive performance compared to prior works. Here we addi-
tionally provide the results of Kernel Inception Score (KID [2]), which is supplement of FID in our work, to evaluate the
difference between abundant generated images and the entire target domain. The results are in Table S7. We show that our
proposed method can achieve comparable KID score with other SOTA FSIG methods.

Additional Ablation Studies. Table S6 1) & 3): We conduct experiments and show that our proposed dynamic
selection is indeed important and compatible with pruning. Table S6 5) & 6): We randomly re-initialize the filters with
the lowest importance, and we show that those filters may not learn knowledge properly due to less iterations in few-shot
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Figure S8. Additional FSIG results with Church 7→ Haunted Houses.
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Figure S9. Additional FSIG results with Church 7→ Palace

FFHQ → 
Babies 

(Close domain) 

FFHQ →  
AFHQ-Cat  
(Distant domain) 

Figure S10. Visualization of the generated images using linear interpolation between two latent codes after adaptation.

adaptation. Therefore, we propose to prune lowest important filters. Table S6 7): We show the results of dynamic scheme
with modulation method [25], the performance is comparable with the freezing scheme. In our paper, we adopt freezing
which is simple to implement.

K. Training longer leads to severe overfitting of existing FSIG methods
In this section, we conduct a study to show that issue of incompatible knowledge cannot be addressed by fine-tuning

for more iterations by Eqn. 1 in the main paper (i.e., GAN loss), as with more iterations in fine-tuning would lead to
severe overfitting as also pointed out in previous work [26]. Specifically, we follow the experiment setup in the main paper
(e.g. Figure 1 and Figure 2 as we analyze the incompatible knowledge transfer in that section) and evaluate the diversity of
generated images at different adaptation steps. The results are in Table S8 and it clearly shows the diversity of generated
images gradually collapse to the few-shot target samples. We conjecture that this is due to Ladv where the generatore Gt is
encouraged to replicate few-shot target samples to fool the discriminator. Therefore, based on the above observations, it is
important to remove the knowledge incompatible to the target domain before mode collapse becomes severe.
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Rebuttal

AdAM 
(SOTA)

Ours

  Gs

Sunglasses MetFace AFHQ-Dog AFHQ-Wild Nearest Neighbor 
(NN) 

Interpolation 
(Our target model)

Real Cat

Our Generated NN

Real Baby

Figure S11. Additional visualization and comparison results. Left: Comparison with SOTA on additional target domains (Sunglasses,
MetFaces, etc.), FFHQ is the source domain. Mid: Similar to Figure S10, we provide additional visualized images by using linearly
interpolated latent codes. Right: For a selected target image, we visualized the nearest neighbour of that target image. To this end, we
generate 5,000 images after adaptation, and assign images with smallest LPIPS distance [24] to each of the target image. Best viewed in
color and zooming in.

Table S4. FID (↓) with respect to the number of shots for adaptation. We use the same experiment setups as Table 1 in the main paper.

Number of Samples Domain TGAN [19] TGAN+ADA [9] EWC [13] AdAM [25] Ours

1-shot 172.49 188.84 104.5 77.71 74.34
5-shot 108.65 105.19 88.51 52.85 43.53

10-shot 101.58 102.98 79.93 48.83 39.39
25-shot 54.83 56.66 44.67 27.77 25.13
50-shot FFHQ 7→ 48.39 52.94 39.32 24.69 22.46

100-shot Babies 39.04 45.71 34.49 19.63 18.85
200-shot 33.65 38.84 32.65 17.06 15.71
500-shot 27.21 26.31 28.11 16.17 13.67

All 25.63 25.47 24.57 13.59 12.34

Number of Samples Domain TGAN [19] TGAN+ADA [9] EWC [13] AdAM [25] Ours

1-shot 125.52 125.81 139.11 118.25 117.69
5-shot 90.24 86.94 136.65 79.53 74.47

10-shot 64.68 80.16 74.61 58.07 53.27
25-shot 40.52 48.61 56.23 32.38 31.85
50-shot FFHQ 7→ 33.87 35.76 43.58 26.43 24.67
100-shot AFHQ-Cat 27.78 28.16 36.93 21.50 19.60
200-shot 24.73 26.78 33.43 19.79 18.02
500-shot 20.25 19.01 32.73 16.80 13.56

All 10.52 9.56 18.76 6.52 6.22

Table S5. We additionally evaluate the proposed method in FFHQ 7→ Sketches setup. We use the same experiment setup as Table 1 in
the main paper. Compared to prior state-of-the-art methods [11, 13], our proposed method can achieve better FID by a large margin with
comparable diversity. Meanwhile, we also note that the entire Sketch domain [18] contains only ∼300 images, which could be not very
stable for evaluation and we only include the results in Supplementary for reference.

Metric Domain TGAN [19] TGAN+ADA [9] EWC [13] CDC [14] AdAM [25] Ours
FID (↓) FFHQ 7→ 53.42 66.99 71.25 45.67 45.03 39.29
Intra-LPIPS (↑) Sketches 0.394 0.414 0.421 0.453 0.459 0.442
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Table S6. FID (↓) with the same hyper-parameters as Tab. S2. We follow Tab.S2 to evaluate the filter importance for target adaptation:
only once for static and periodically for dynamic.

Method (the same experiment setup as Tab. S2) FFHQ→ Babies FFHQ→ Cat
1) Ours {static, no freezing, w/ prune} 56.62 64.25
2) Ours {static, w/ freezing, w/ prune} (Tab.S2) 46.87 57.56
3) Ours {dynamic, no freezing, w/ prune} 51.08 59.71
4) Ours {dynamic, w/ freezing, w/ prune} (Tab. S2 & Tab. 1) 39.39 53.27
5) Ours {static, w/ freezing, w/ random re-initialize} 50.54 59.93
6) Ours {dynamic, w/ freezing, w/ random re-initialize} 41.67 55.21
7) Ours {dynamic, w/ modulation, w/ prune} 39.97 53.81

Table S7. Besides the FID and Intra-LPIPS results in the main paper, we additionally include KID (↓) score of different methods. We use
the same experiment setup as Table 1 in the main paper. Following prior works [3, 9], we scale the KID values with 103.

Domain TGAN [19] TGAN+ADA [9] EWC [13] CDC [26] AdAM [25] Ours
FFHQ 7→ Babies 60.91 64.84 54.94 47.45 32.74 29.43
FFHQ 7→ AFHQ-Cat 46.03 64.54 57.79 192.38 35.53 35.16

Table S8. Intra-LPIPS of generated images during adaptation (see details of Intra-LPIPS in Algorithm 2). The issue of incompatible
knowledge cannot be addressed by training longer iterations. In particular, we empirically observe that training longer iterations will lead
to severe overfitting for different existing FSIG methods, including early baseline method [19] and recent state-of-the-art methods [13,25].
Here we evaluate the diversity of generated images of different methods using Intra-LPIPS over 10-shot target samples. Lower value
indicates that the generated images are less diverse and collapsing to few-shot target sample. The experiment setups are the same as Table
1 in the main paper.

Method Domain iter-0 iter-500 iter-750 iter-1000 iter-1250
TGAN [19] 0.678 0.563 0.507 0.436 0.394
EWC [13] Church 7→ 0.679 0.641 0.611 0.599 0.583
AdAM [25] Sailboat 0.693 0.611 0.546 0.512 0.484
Ours 0.683 0.605 0.559 0.528 0.509

Method Domain iter-0 iter-500 iter-750 iter-1000 iter-1250
TGAN [19] 0.664 0.620 0.563 0.545 0.517
EWC [13] FFHQ 7→ 0.665 0.656 0.638 0.622 0.618
AdAM [25] AFHQ-Cat 0.670 0.658 0.615 0.585 0.557
Ours 0.667 0.655 0.635 0.605 0.592

L. Future works
We review current SOTA approaches for FSIG in this work and investigate the transfer of incompatible knowledge after

adaptation, which significantly reduces the realism of generated images from adapted generators. We also provide a thorough
evaluation of alternative approaches using various adaption scenarios. We believe our proposed method can also be applied
to other generative models and adaptation setups, as it works by adaptively eliminating filters that are incompatible with
the target domain while maintaining knowledge crucial to the target domain, which is robust to different generative model
architectures and training strategies. In future research, we are also interested in exploring the knowledge transfer for other
generative models, including Diffusion Models [16]. Furthermore, the effects of transferring incompatible knowledge on
downstream tasks is also a interesting problem to study.
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M. Broader impact
M.1. Potential social and ethical impact

Throughout the paper, we demonstrate effective target adaption results using extremely small target training sample(s).
Although we have achieved new state-of-the-art performance across various FSIG setups, we caution that because the FSIG
adaptation of our method is lightweight, it could be quickly and cheaply applied to a real person in practice, there may be
potential social and ethical issues if it is used by malicious users. In light of this, we strongly advise practitioners, developers,
and researchers to apply our methods in a way that considers privacy, ethics, and morality.

M.2. Amount of computation and CO2 emission

Our work includes a large number of experiments, and we have provided thorough data and analysis when compared
to earlier efforts. In this section, we include the amount of compute for different experiments along with CO2 emission.
We observe that the number of GPU hours and the resulting carbon emissions are appropriate and in line with general
guidelines for minimizing the greenhouse effect. Compared to existing works in computer vision tasks that adopt large-scale
pretraining [7, 16] and consume a massive amount of energy, our research is not heavy in computation. We summarize the
estimated results in Table S9.

Table S9. Estimation of amount of compute and CO2 emission in this work. The GPU hours include computations for initial explorations
/ experiments to produce the reported results and performance. CO2 emission values are computed using Machine Learning Emissions
Calculator: https://mlco2.github.io/impact/ [12].

Experiments Hardware Platform GPU Hours (h) Carbon Emission (kg)
Main paper : Table 1 (Repeated three times) NVIDIA A100-PCIE (40 GB) 312 33.7
Main paper : Figure 1 NVIDIA A100-PCIE (40 GB) 64 6.91
Main paper : Figure 2 NVIDIA A100-PCIE (40 GB) 112 12.1
Main paper : Figure 4 & Figure 5 NVIDIA A100-PCIE (40 GB) 87 9.4
Supplementary : Additional Experiments & Analysis NVIDIA A100-PCIE (40 GB) 58 6.26
Supplementary : Ablation Study NVIDIA A100-PCIE (40 GB) 16 1.73
Additional Compute for Hyper-parameter tuning NVIDIA A100-PCIE (40 GB) 24 2.59
Total – 673 72.69
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