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A. Visualizations of Adapted Features

In this part, we provide more analyses of our key compo-
nent Class-Aware Bilateral Distillation (CABD). In Fig. 1,
we visualize the feature embeddings and the correspond-
ing classification weights (i.e., prototypes) from the mini-
ImageNet test set with (novel branch) or without (base
branch) adaptation to novel classes using our proposed dis-
tillation module. For clarity, 5 base classes and 5 novel
classes are randomly chosen and features of 100 per-class
test samples are considered. As shown in the left part of
Fig. 1 (highlighted with dark red circle), the orange novel
class prototype (marked with star) is confused with the pink
novel class without CABD, since the base branch is trained
only on base categories which can not effectively adapt
to novel concepts. By contrast, after adaptation to novel
classes with our proposed CABD, the above two classes be-
come more distinguishable in the novel branch shown in the
dark green circles from the right part of Fig. 1. The above
observation explains the improved performance of the novel
branch in Table 2 of our main paper.

B. Analyses of Incremental Shot

For further validating the effectiveness of our proposed
method, we vary the shot number (i.e., the number of train-
ing samples in each incremental class) of the original N -
way K-shot few-shot class-incremental learning task. We
can see from Fig. 2 that our method can be applied to ex-
treme cases where only a single training sample (1-shot)
is provided, highlighting the robustness of the proposed
approach. In addition, given more training samples from
novel classes, improved performance is observed corre-
spondingly. It is because our approach can better adapt
to these incremental classes with the help of more training
data, which proves the extendibility of our method.
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C. Datasets of Different Semantic Relations

For the readers to have a better understanding of the
semantic characteristics of different benchmark datasets:
mini-ImageNet [12], CIFAR100 [6] and CUB200 [13], we
visualize each dataset by sampling one image for each class
shown in Fig. 3. In addition, according to the setting
of Few-Shot Class-Incremental Learning (FSCIL), we also
split each dataset into the base classes and novel classes
with colors blue and red, respectively.

As shown in Fig. 3, the fine-grained classification dataset
CUB200 contains samples from only bird categories with
similar appearance, which leads to strong semantic correla-
tions between base and novel classes. In contrast, images
from regular classification datasets mini-ImageNet and CI-
FAR100 show diversified visual looking, and the semantic
similarities between base and novel classes are in a lower
level compared to CUB200. The above observation veri-
fies the experimental results in Fig. 5 (a) of the main paper,
that is, quantitative semantic similarities between base and
novel classes from mini-ImageNet and CIFAR100 datasets
are lower than that of the fine-grained classification dataset
CUB200. Furthermore, it also validates the empirical find-
ing that more generalizable knowledge from base classes
(i.e., with a larger value of the coefficient ρ(x) in Eq. 2
of the main paper) should be transferred for facilitating the
learning of novel classes in CUB200 due to the strong se-
mantic correlations between them.

We can see from Fig. 3 that the first half part of base
classes from mini-ImageNet (indices 1-35) belong to animal
classes (e.g., “house finch”, “robin” and “green mamba”),
while the rest of base classes (indices 36-60) and the novel
classes (indices 61-100) include a large proportion of inor-
ganic objects. As a result, these base classes with indices
1-35 are relatively less similar to novel classes. Thus, for
better handling these classes, the model should pay more
attention to the predictions from the base branch by using a
larger base branch attention weights αb, which further con-
firms the results of Fig. 6 (a) in our main paper.
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Figure 1. T-SNE [11] plots of test samples and the corresponding classification weights/prototypes in the final session from mini-ImageNet
with (novel branch) or without (base branch) our proposed Class-Aware Bilateral Distillation (CABD) module. Categories are represented
by different colors. Best viewed in color.

Figure 2. Experiments on the influence of incremental shot on
mini-ImageNet dataset.

D. Analyses of Confusion Matrix

To better understand the unique difficulties of few-shot
class-incremental learning task, we plot the confusion ma-
trix generated by (a) our base branch, (b) vanilla knowledge
distillation (i.e., directly using the output of model t-1 for
distillation) and (c) our full method in Fig. 4.

We can see from Fig. 4a that base branch specializes in
classifying base classes with concentrated values on the di-
agonal of these categories. However, the base branch per-
forms poorly on novel classes with much darker diagonal
on them, since the base branch is only trained on the base
training set without adaptation to novel classes.

By contrast, adapting with vanilla knowledge distillation
in Fig. 4b can better handle novel class samples but fails
to preserve base knowledge, resulting in darker diagonal on

base classes compared to Fig. 4a and scattered prediction
distribution. It is because the severe data scarcity of few-
shot class-incremental learning not only causes the unique
overfitting issue but also aggravates catastrophic forgetting.

As shown in Fig. 4c, with the proposed class-aware bi-
lateral distillation module and attention-based aggregation
module, our full method can address the above difficulties
with concentrated values on the diagonal of both base and
novel classes, confirming the observed performance gains
in experiments.

E. Detailed Experimental Results

In Table 1 and Fig. 3 of our main paper, we provide com-
parisons to the state-of-the-arts. Here, we present more de-
tailed results on CIFAR100 and CUB200. Table 1 and Ta-
ble 2 show that our method with default setting (1 exemplar
per class) significantly outperforms all previous approaches.
Compared to the second-best results on both benchmark
datasets, we achieve 4.04% and 4.97% increase in the ac-
curacy from the final session, and 3.21% and 2.79% im-
provement in the average performance.

As discussed in Section 4 of the main paper, to trade
off between memory cost and accuracy, our method is
also flexible enough to address situations where none or
more exemplars are available. It is observed from Ta-
ble 1 and Table 2 that, we further improve the accuracy in
the final session by 0.68% and 2.88% on CIFAR100 and
CUB200 datasets when 5 exemplars are provided [4, 9].
Moreover, when exemplars are not provided in incremen-
tal sessions (i.e., 0 exemplar), our method can still out-
perform all existing works, which validates the superi-
ority of our proposed framework. Code is available at
https://github.com/LinglanZhao/BiDistFSCIL.



Figure 3. Visualizations of three FSCIL datasets mini-ImageNet [12], CIFAR100 [6] and CUB200 [13] with separated base (in blue) and
novel (in red) classes. One example image for each class is sampled and the images are placed (from left to right, from top to bottom) by
the order of class indices.

(a) Base branch (Accuracy = 48.97%) (b) Vanilla distillation (Accuracy = 45.33%) (c) Our full method (Accuracy = 52.22%)

Figure 4. Confusion matrices of baseline approaches and our full method on mini-ImageNet. Blue lines are used to separate base classes
and novel classes. Our full method effectively improves the prediction in the final session resulting in a less scattered confusion matrix.
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Method
Accuracy in each session (%)

Avg.
Final

Impro.0 1 2 3 4 5 6 7 8

Ft-CNN♢ [10] 64.10 36.91 15.37 9.80 6.67 3.80 3.70 3.14 2.65 16.24 +53.23
iCaRL∗♢ [8] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 +42.15
EEIL∗♢ [2] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79 +40.03
LUCIR∗♢ [5] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 +42.23
TOPIC [10] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 +26.51
ERL++∗∗ [4] 73.62 68.22 65.14 61.84 58.35 55.54 52.51 50.16 48.23 59.29 +7.65
Cosine⋆ [15] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 58.23 +8.20
DeepEMD⋆ [14] 69.75 65.06 61.20 57.21 53.88 51.40 48.80 46.84 44.41 55.39 +11.47
CEC [15] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 +6.74
F2M∗∗ [9] 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 59.14 +6.53
CLOM [19] 74.20 69.83 66.17 62.39 59.26 56.48 54.36 52.16 50.25 60.57 +5.63
Replay∗ [7] 74.40 70.20 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.77 +5.74
MetaFSCIL [3] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +5.91
FACT♮ [17] 78.83 72.71 68.63 64.71 61.48 58.34 56.00 53.85 51.84 62.93 +4.04

Ours (0 exemplar) 79.45 75.20 71.34 67.40 64.50 61.05 58.73 56.73 54.31 65.42
Ours (1 exemplar)[default]∗ 79.45 75.38 71.84 67.95 64.96 61.95 60.16 57.67 55.88 66.14
Ours (5 exemplars)∗ 79.45 75.63 72.00 68.09 65.54 62.59 60.76 58.35 56.56 66.55

∗: methods with 1 exemplar per class. ∗∗: methods with 5 exemplars per class. ♢: results from [10]. ⋆: results from [15]. ♮: results using the code from [17].

Table 1. Comparisons to state-of-the-art FSCIL methods on CIFAR100. “Final Impro.” highlights the improvement in the final session.

Method Accuracy in each session (%) Avg. Final
Impro.0 1 2 3 4 5 6 7 8 9 10

Ft-CNN♢ [10] 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.60 8.93 8.93 8.47 22.02 +52.46
iCaRL∗♢ [8] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +39.77
EEIL∗♢ [2] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 +38.82
LUCIR∗♢ [5] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +41.06
TOPIC [10] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +34.65
SPPR [18] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +23.60
GP-Tree∗ [1] 72.84 67.00 62.98 58.19 54.84 51.77 49.40 47.57 45.47 44.05 42.72 54.26 +18.21
ERL++∗∗ [4] 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28 61.17 +8.65
Cosine⋆ [15] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36 +11.62
DeepEMD⋆ [14] 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 58.73 +13.33
CEC [15] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +8.65
F2M∗∗ [9] 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 63.96 +5.04
Replay∗ [7] 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52 +8.54
MgSvF [16] 72.29 70.53 67.00 64.92 62.67 61.89 59.63 59.15 57.73 55.92 54.33 62.37 +6.60
MetaFSCIL [3] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93 +8.29
FACT♮ [17] 78.91 75.19 71.34 66.09 65.59 62.06 60.92 59.31 57.65 57.01 55.96 64.55 +4.97

Ours (0 exemplar) 79.12 74.99 70.87 67.30 65.89 63.45 61.40 60.11 58.61 58.23 57.48 65.22
Ours (1 exemplar)[default]∗ 79.12 75.37 72.80 69.05 67.53 65.12 64.00 63.51 61.87 61.47 60.93 67.34
Ours (5 exemplar)∗ 79.12 75.63 73.21 69.93 68.32 66.30 65.15 64.96 64.20 64.03 63.81 68.61

∗: methods with 1 exemplar per class. ∗∗: methods with 5 exemplars per class. ♢: results from [10]. ⋆: results from [15]. ♮: results using the code from [17].

Table 2. Comparisons to state-of-the-art FSCIL methods on CUB200. “Final Impro.” highlights the improvement in the final session.
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