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Supplementary Materials

1. Implementation Details

Random, Herding and Forgetting for ImageNet Subset.
Following other methods in Table 1 of the main paper, we
use the augmentation strategy of DC [2] in the evaluation
of three baselines of ImageNet Subset. For Random, we
randomly pick samples from the real set according to the
experiment setting and evaluate the performance using the
same model architecture and hyper-parameters. For Herd-
ing, we first pretrain the ConvNet using the entire ImageNet
Subset for 40 epochs, where the accuracy reaches the peak
performance, then use the ConvNet to extract features for
all images. Finally, we calculate the average feature of all
features from the same class and select its closest neigh-
bors among the features of the real images as the coreset
for evaluation. Similar to DM [1], we use the L2 distance
for closest neighbor calculation. For Forgetting, we first
train the ConvNet with the entire ImageNet Subset and then
count the number of epoch-wise incorrect predictions for
each real sample independently. Finally, we select the sam-
ples with the largest numbers of incorrect predictions as the
coreset. Since the performance of the model continues to in-
crease as the training progresses, we empirically found that
Forgetting performs much worse than the other two base-
lines when the epoch number is set to a large number, pos-
sibly because ImageNet contains some mislabeled samples.
Therefore, we reduce the epoch number for ConvNet train-
ing to 5 and randomly select the samples with the largest
numbers of incorrect epoch-wise predictions.

Other Details of Our Method. For all the experiments in
Table 1 of the main paper, we use a learning rate of 0.2. Be-
sides, we set an extra interval for the Push and Train model
queue operations to reduce the training cost for condensa-
tion. For CIFAR-10/100, we set the interval as 30.

2. Cross-architectural Experiments

As a complement to Table 4, Sec. 5.5 of the main paper,
we further compare our method to DM with three other ar-
chitectures. The full table is shown in Table 1. It can be
observed that our method outperforms DM in all 4 x4 dif-
ferent settings.

Table 1. Cross-architectural performance of our IDM method on
CIFAR-10 with 10 Img/Cls. Our IDM achieves a significant im-
provement over DM. Bold: DM with three other architectures that
are not included in the main paper.

| C\T | ConvNet | AlexNet | VGG | ResNet

ConvNet | 48.9+0.6 | 38.8+0.5 | 42.1£0.4 | 41.2£1.1
AlexNet | 34.4+0.3 | 28.8+1.1 | 31.6+0.6 | 31.4+0.3

DM VGG 31.7+0.7 | 30.1x1.3 | 31.9+0.4 | 30.0+1.0
ResNet | 35.5+0.3 | 31.3+0.3 | 32.6+0.7 | 35.3+0.9
ConvNet | 53.0+0.3 | 44.6+0.8 | 47.8+1.1 | 44.6+0.4

Ours AlexNet | 44.8+0.5 | 41.4+1.4 | 43.1£0.6 | 41.0£0.1

VGG 41.2+0.4 | 37.4+0.3 | 41.7+0.4 | 38.8+0.8
ResNet | 38.3+0.4 | 37.0+0.7 | 39.0+0.1 | 39.0+0.4

3. Start with Pre-trained Models

As we mentioned in Sec 4.2 of the main paper, our
method pushes randomly initialized networks to the model
queue, and the model fetched from the model queue is
trained for K iterations in each condensation step. How-
ever, when the model queue is applied to larger and more
difficult datasets, sometimes we need a large K and N4,
to make the model queue large enough to contain suffi-
ciently trained models, i.e., the model trained for K X N, 42
iteration is well-performing enough to extract meaningful
embeddings. This could be computationally intensive. To
alleviate the problem, we propose some simple modifica-
tions to the model queue that can enable the model queue to
start with pretrained networks, i.e., Py(t) where ¢ > 0.

The first modification for the problem is a small pre-
trained model set, in which the models are trained for ¢ it-
eration, and the Push operation of the model queue pushes
a randomly selected model from the pre-trained model set
to the model queue. Besides, to preserve the diversity of
the starting models for the model queue, we further ap-
ply some changes to the optimization scheme for each se-
lected model. When pushing each pre-trained model to the
model queue, we initialize the corresponding optimizer with
a smaller random perturbation to the learning rate:

Ir* = Ir + Random(—0.1 x Ir,0.1 x Ir), €))

where [r is the original learning rate, Random(—0.1 X
Ir,0.1 x Ir) generates a random float value between —0.1 x



Ir and 0.1 x [r, and lrx is the new learning rate for the
corresponding optimizer. Moreover, we randomly select a
subset of image classes and assign the subset to the selected
model. In the training operation of the model queue, we
only trained the model with the real image samples from
the categories in the subset, thus the optimization of each
pre-trained model can be diversified for better condensa-
tion. The learning rate perturbation and class subset training
can be viewed as some model augmentation techniques for
model diversity preservation. We use the techniques in the
experiments of ImageNet Subset to reduce training effort.

4. Visualization of Condensed Synthetic Sets

Fig. | and Fig. 2 visualize the synthetic sets condensed
by our method on CIFAR-100 with 1 image per class with
and without the proposed partition and expansion augmen-
tation, respectively. Interestingly, there are some repetitive
textures in all images of Fig. 2, which might indicate lower
utilization of pixels as fine-grained image details are dis-
carded during forward propagation. For more information,
we also visualize the results of original DM [1] in Fig. 3,
whose textures share similar patterns to ours. Fig. 4 and
Fig. 5 visualize the results of CIFAR-10 with 10 images per
class with/without our augmentation respectively.
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Figure 1. Visualization of synthetic set on CIFAR-100 with 1 image per class with our partition and expansion augmentation.

Figure 2. Visualization of synthetic set on CIFAR-100 with 1 image per class without our partition and expansion augmentation.
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Figure 3. (Original DM [1] results) Visualization of synthetic set on CIFAR-100 with 1 image per class without partition and expansion

augmentation.

Figure 4. Visualization of synthetic set on CIFAR-10 with 10 image per class with our partition and expansion augmentation.
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Figure 5. Visualization of synthetic set on CIFAR-10 with 10 image per class without our partition and expansion augmentation.
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