A. Radar Chart Figure 1 Details

We first describe how we plot the radar chart in Figure 1.
Each axis denotes a specific metric on one video under-
standing task. Each vertex denotes a ratio relative to our
performance, which is computed by normalizing the per-
formance of either LAVILA or previous SOTA by that of
LAVILA, and is in the range of (0, 1]. For illustrative pur-
pose, we set the radar chart’s origin to be 80% and outer-
most frame to be 100% so that the interval between neigh-
boring lattices to be 5%. The numbers annotated next to the
vertices are absolute value of performance without normal-
ization. Note that in other radar charts [69, 80], the axes
have different scales and interval values while the origin is
not valid, which may lead to potential fallacies.

Next we elaborate the evaluation metrics and previous
state-of-the-arts in each axis. For EK-100 MIR and Cha-
radesEgo, we compare our method to EgoVLP [39] in the
fine-tuned settings. For EgoMCQ, we compare our method
to EgoVLP [39] in the zero-shot settings. For EGTEA
recognition, the previous state-of-the-art is MTCN [33]. For
EK-100 CLS, we plot the action-level top-1 accuracy after
fine-tuning as it is the primary metric proposed in [14] (and
used in the EPIC challenges). The previous state-of-the-
art is Multiview Transformer (MTV) [79] pre-trained on a
private dataset. For UCF-101 and HMDB-51 classification,
we report the linear-probing mean accuracy following MIL-
NCE [44]. The previous state-of-the-art is TAN [25].

B. LAVILA Details

The algorithm of training LAVILA is given in Algo-
rithm 1. The loss is based on the CLIP [49]’s symmet-
ric cross-entropy loss over the similarity scores of samples
in the batch B; U B,, with minimal modifications. We ap-
ply two separate temperatures (7., 7,, ) for embeddings from
rephrased pairs and pseudo-captioned ones respectively,
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We ablate different choices of temperatures in Table 12.

C. Dataset Details

In this section, we provide details of the datasets where
we conduct experiments.
Ego4D. Ego4D contains 3,670 hours of egocentric videos
with temporally dense narrations. Each narration has a
timestamp and an associated free-form sentence. We con-
struct the video-text clip pairs that are used for pre-training
following [39]. First, we exclude 2,429 videos that appear
in the validation and test sets of the Ego4D benchmark.

Algorithm 1 One step of training LAVILA

Require: A subset of narrated (unnarrated) clips B; (B,,)
clips with LM-generated narrations B; = {}, B, = {}
for (z;,y;) € B; do

u~U(0,1) > Uniform sample between 0 and 1
if v < 0.5 then > Query REPHRASER

y; ~ DREPHRASER (y’lyi), T < Tr

else > Query NARRATOR
y; ~~ DPNARRATOR (y’\xi), Ti < Tn
end if _
B+ B U{(zs,y,, )}
end for

for z; € B, do
y; ~~ DPNARRATOR (y’lxi)7 Tj < Tn
By « By, U {(‘rﬁy;'a Tj)}
end for .
Train Fp aviLa (2, y) with the batch B; U B,, using Eq 4.

Next, we determine the each clip’s interval using the contex-
tual variable-length clip pairing strategy in [39]. Finally, we
drop the narrations that either contain “#unsure”/*“#Unsure”
tags or are shorter than 4 words. This results in 4,012,853
video-text clip pairs with an average clip length of 1(4-0.9)
second. For the excluded videos, we also pre-process sim-
ilarly and obtain 1,260,434 video-text clip pairs. We only
use them as validation split to measure the generation qual-
ity of NARRATOR in Table 7a.

EK-100. The Epic-Kitchens-100 (EK-100) dataset contains
100 hours of egocentric cooking videos. The training split
has 67,217 video clips; the validation split has 9,668 video
clips; the testing split has 13,092 video clips. Each clip is
annotated with (1) a start and end timestamp, (2) a short tex-
tual narration, and (3) a verb and noun class that the narra-
tion belongs to. The action class can also be uniquely deter-
mined by combining the verb and the noun. In the zero-shot
setting, we evaluate the pre-trained model on the validation
split directly without any tuning; In the finetuned setting, we
take the pre-trained model and perform end-to-end finetun-
ing on the training split and evaluate on the validation split.
For EK-100 MIR we use the textual narration while for EK-
100 CLS we use the class of verb, noun, and action as the
label. For EK-100 MIR, the evluation metrics are mean Av-
erage Precision (mAP) and normalized Discounted Cumu-
lative Gain (nDCG). For EK-100 CLS, the evaluation met-
rics are top-1 accuracies for verb, noun, and action. Action-
level accuracy is the most important one among all.
EGTEA. EGTEA contains 28 hours of egocentric cooking
videos with gazing tracking. In our experiments, we take as
input the visual frames only. The action annotations include
10,321 instances of fine-grained actions from 106 classes,
with an average duration of 3.2 seconds. In the zero-shot
setting, we evaluate the pre-trained model on the test set of



all three splits without any tuning and report results as the
mean accuracy averaged across all classes across all three
splits, as Li et al. [37] suggested. In the finetuned setting,
we follow prior works [33] and report top-1 accuracy and
mean class accuracy using the first train/test split, which
has 8,299/2,022 instances respectively.

CharadesEgo. The CharadesEgo dataset contains 7,860
videos of daily indoor activities from both third- and first-
person views. The annotations are 68,536 instances of fine-
grained actions from 157 classes. We use the first-person
subset only, comprising 3,085 videos for training and 846
videos for testing. We report video-level mAP as the eval-
uation metric. In the zero-shot setting, we evaluate the pre-
trained model on the test videos directly without any tuning;
In the finetuned setting, we perform end-to-end finetuning
on the trimmed action instances in the training split, which
has an amount of 33,114 action instances.

D. Implementation Details
D.1. Pre-training on Ego4D

We pre-train on the video-narration pairs from
Ego4D [24]. We train the model using AdamW with
(B1,P2) = (0.9,0.999) and weight decay of 0.01 for 5
epochs. After the video-narrations pairs are augmented
by NARRATOR and REPHRASER, we find the zero-shot
performance keeps improving so the number of epochs is
increased to 12. We use a fixed learning rate of 3e-5. The
projection head after the dual-encoders is a linear layer with
an output dimension of 256. We use PyTorch’s native FP16
mixed precision training and gradient checkpoint. This
allows us to afford a per-gpu batch size of 32 over 32 GPUs
for TimeSformer-B and a per-gpu batch size of 16 over 64
GPUs for TimeSformer-L, resulting in a total batch size of
1,024. We abate these design choices in Appendix F.

For input, we first divide each video into 5-minute seg-
ments and scale the short side of the video to 288 pixels.
This signifantly reduces storage and accelerates decoding.
During training, we decode the corresponding segment that
contains the selected clip. We randomly sample 4 frames
between the start and end time of the clip and use standard
RandomResizedCrop (0.5, 1.0) fordataaugmen-
tation.

D.2. Training NARRATOR on Ego4D

Architecture. For the video encoder, we use the one we ob-
tain in Appendix D.1 and keep it frozen. We drop the global
average pooling layer and attach an attention pooling mod-
ule, which is instantiated by a standard cross-attention [66]
and a Layer Normalization [3]. The attention pooling uses
a fixed length of randomly initalized queries q € RVa*Ds
to attend visual features v € R(T*H' xW)xDv Thjs results
in a fixed length of hidden states, AttentionPool(q,v) €
RNaxDe  which will be later fed into the cross-attention

module of the text decoder. This ensures the text decoder
attends to the same number of visual features irrespective
of the input visual resolution, e.g. 224 x224 or 336x336.
More concretely, AttentionPool(q, v) is computed as fol-
lows:

q’,v' = LayerNorm(q), LayerNorm(v),

"W W) T
head; = softmax (a Q X x) . (v'Wv),
Vdo
AttentionPool = Concat(heads, - - - ,headr) - Wo,

where Wg € RPexdo, Wk v € RPv>xdo and Wy €
R(h'do) XDy

For the text decoder, we use GPT-2 XL [50] and keep it
frozen. The video encoder and the text decoder is bridged
by a cross-attention module. Each cross-attention mod-
ule comprises a cross-attention layer followed by a feed-
forward network (FFN). Layer Normalization is added at
the beginning of both cross-attention and FFN. We add
tanh-gating [27] with an initial value of zero. We in-
sert one cross-attention module every two GPT2-Blocks
in GPT2 XL to save memory. Both the attention pool-
ing and cross-attention modules are learnable parameters,
which take less than 30% of the total parameters.

We train NARRATOR on the ground-truth video-
narration pairs from Ego4D [24]. The training recipe mostly
follows the one for pre-training the dual-encoders except
that we use FP32 to train NARRATOR because PyTorch’s na-
tive FP16 mixed-precision leads to training instability. We
use the video-text clip pairs from the Ego4D’s validation
videos to compute the word-level classification accuracy
and perplexity. We select the model with the highest ac-
curacy as well as lowest perplexity, which is often reached
after 3~4 epochs. It takes around 2 days to train a NARRA-
TOR using 32 V100 GPUs.

D.3. Multi-Instance Retrieval on EK-100

We fine-tune the pre-trained model on EK100 using
AdamW with (81, B2) = (0.9,0.999) and weight decay of
0.01. We use cosine annealing with warmup, where the base
learning rate starts from le-6, linearly increases to a peak
of 3e-3 in the first epoch and then gradually decreases to
le-5 following a half-wave cosine schedule. We apply the
multi-instance max-margin loss [75] with a margin value of
0.2. We use a per-gpu batch size of 16 over 8 GPUs for
TimeSformer-B and a per-gpu batch size of 4 over 32 GPUs
for TimeSformer-L. We use a stochastic depth ratio of 0.1
in the backbone.

For the input, we represent each video clip with 16 sam-
pled frames at both training and testing time. At training
time, We scale the short side of the video to 256 pixels and
then take a 224 x 224 crop while at testing time, we scale the
short side to 224 pixels and take the center 224 x224 crop.



Top-1 accuracy

Method (Backbone) Pretrain Verb Noun Action
IPL (I3D) [71] K400 68.6 512 41.0
ViViT-L [2] IN-21k+K400 66.4 56.8 44.0
MoViNet [34] N/A 722 573 477
MTV [79] WTS-60M 699 639 50.5

MTCN (MFormer-HR) [33] | IN2ik+K400 +VGG-Sound | 70.7  62.1  49.6
Omnivore (Swin-B) [22] IN21K+IN-1k +K400+SUN | 69.5  61.7  49.9
MeMVIT [76] K600 714 603 484
LAVILA (TSF-L) WIT+Ego4D 720 629 51.0

Table 9. The performance of action recognition on EK-100. We
report top-1 accuracy on verb, noun, and action. LAVILA outper-
forms all prior works in terms of action-level top-1 accuracy.

D.4. Action Recognition on EGTEA

We fine-tune the pre-trained model on EGTEA for 100
epochs using SGD with a momentum of 0.9 and weight de-
cay of 5e-4. We use cosine annealing with warmup, where
the base learning rate starts from 1e-6, linearly increases to a
peak of 3e-3 in the first epoch and then gradually decreases
to le-5 following a half-wave cosine schedule. We drop
the linear projection head and attach a 106-dim head for
classification. For LAVILA, we train the classification head
with 1x base learning rate and the backbone with 0.1 x. For
visual-only video model pre-trained on Kinetics, we use 1 x
base learning rate for both the classification head and the
backbone. We use a per-gpu batch size of 16 over 8 GPUs
for TimeSformer-B and a per-gpu batch size of 4 over 32
GPUs for TimeSformer-L. We use a stochastic depth ratio
of 0.1 in the backbone and a dropout of 0.5 before the clas-
sification head. We also use a label smoothing of 0.1.

For input, we randomly select a 32-frame video clip at
a temporal stride of 2 (namely 16x2) from each video at
training time. We scale the short side of the video to 256
pixels and then take a 224224 crop. For data augmen-
tation, we use standard RandomResizedCrop (0.5,
1.0) and RandomHorizontalFlip (0.5). At test-
ing time, we evenly take ten 32-frame clips through the full
video. We scale the short side to 224 pixels and take three
spatial crops along the longer axis per clip. The final pre-
dictions are averaged over all these crops.

D.5. Action Recognition on EK-100

We fine-tune the pre-trained model on EK100 with a
same training schedule as in EGTEA. The only exception
is that we apply three classification heads for verb, noun,
and action separately because we empirically observe that
it speeds up convergence and performs slightly better than
using a single action-level classification head.

For the input, we represent each video clip with 16 sam-
pled frames at both training and testing time. At testing
time, we take three spatial crops along the longer axis per
clip and average the final predictions.

D.6. Action Recognition on CharadesEgo

Following EgoVLP [39], we convert the task of action
classification to that of video-text retrieval as follows: for
each trimmed video clip with textual annotations, we con-
sider it to be a valid video-text pair for training. Since
CharadesEgo is a multi-class dataset, which means each
trimmed video can be annotated with different classes, we
treat any trimmed video clip with N actions as N individ-
ual video-text pairs. We use the same InfoNCE [48] loss.
We fine-tune the pre-trained model on CharadesEgo using
AdamW with (31, 82) = (0.9,0.999) and weight decay of
0.01. We use cosine annealing with warmup, where the
peak learning rate is set to be 3e-5. For input, we randomly
select a 32-frame video clip at a stride of 2 from the trimmed
video at training time and evenly sample 16 frames from the
untrimmed video at testing time to calculate the video-level
mAP. We finetune the model for 10 epochs and report the
best performance.

D.7. LAVILA for Third-person Video Pre-training

The pre-training recipe mostly follows the one in Ap-
pendix D.I except that when constructing a batch of sam-
ples, we sample one more hard negative clip from the same
video for each selected clip following [25].

When doing linear-probing evaluation, we keep the
video encoder frozen, extract video feature and train a lin-
ear SVM on top. For each video clip in either HMDB-51 or
UCF-101, we evenly take four 32-frame clips through the
entire video. We scale the short side to 224 pixels and take
the center crop per clip and pass through the frozen video
encoder to get the final visual embedding. For each test-
ing video, we average the prediction score from different
clips. We use scikit-learn’s LinearSVC and report the high-
est top-1 accuracy after sweeping the regularization param-
eter C € {107°,107%,1073,1072,0.1,1, 102,103, 10*}.

E. Additional Results

EK-100 CLS. We compare LAVILA representation on EK-
100 CLS in Table 9. We achieve state-of-the-art perfor-
mance in terms of top-1 action accuracy. Note that the
second best-performing Multiview Transformer [79] is pre-
trained on WTS-60M which is not publicly available.
More results on Semi-supervised Learning. Following
the setup in § 5.3, we provide more results in Figure 6 while
replacing the backbone of LAVILA with TimeSformer-
Large. We observe similar trends as § 5.3 where LAV-
ILA outperforms the ground-truth-only baseline at all data
points.

F. Additional Ablations

Improved Baseline on EK-100 MIR. We present an im-
proved baseline of video-language model pretrained on
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Figure 6. More results of LAVILA in a semi-supervised setting where only a limited amount of narrations are given. Both LAVILA
and the baseline use a TimeSformer-Large as the visual encoder backbone. Comparing zero-shot performance of pre-training, LAVILA
consistently outperforms the groundtruth-only baseline when 10, 20, 50,100% data is used.

EgoNCE CLIP-init. # frames| Avg. Avg.
mAP  nDCG
Extracted RGB frames
EgoVLP [39] 4 15.5 22.1
EgoVLP [39] v 4 16.6 23.1
Videos (downsized to 480p)
EgoVLP [39] v 4 22.3 27.4
EgoVLP [39] v 16 23.6 27.9
Our impl. 4 24.1 28.0
Our impl. v 4 24.7 28.4

Table 10. Improved baseline evaluted on EK-100 MIR. We ob-
serve that evaluting on videos directly improves the baseline no-
ticeably. Using CLIP-pre-trained encoder weights introduces ad-
ditional improvements. All gains shown in the paper are on top of
this already strong baseline (last row).

Ego4D and evaluate it on EK-100 MIR in a zero-shot setting
in Table 10. The initial baseline is video-language model
with a TimeSformer-Base as visual encoder and a Distil-
BERT as textual encoder, proposed in EgoVLP [39]. First,
we find that zero-shot evaluation on videos brings a notice-
able improvement than on extracted RGB frames. Particu-
larly, given the same EgoVLP+EgoNCE model, zero-shot
retrieval can increase by 5.7% average mAP and 4.3% aver-
age nDCG repespectively. This is probably because frame
extraction using ffmpeg’s default parameter downgrades the
image quality by a considerable amount. Second, under the
same video-as-input evaluation protocol, our implementa-
tion with the same backbone (TimeSformer-Base + Distil-
BERT) using standard InfoNCE loss without EgoNCE, can
achieve 24.1% and 28.0% average mAP and nDCG, bet-
ter than the EgoVLP with EgoNCE. Third, if we pretrain
the joint model using CLIP-pretrained models as the initial
weights, the zero-shot retrieval result can be further boosted
(+0.6% avg. mAP and +0.4% avg. nDCG), indicating that
egocentric video representation can also benefit from large-
scale image-text pre-training.

Starting from this improved baseline, we conduct more
ablations on pretraining the video-langauge model in Ta-

ble 11 as follows. We measure the performance by zero-
shot average mAP and average nDCG on EK-100 MIR.
Effect of weight initialization. We study the effect of ar-
chitectures and weight initialization in Table 11a. First, we
observe that using the same architecture of TimeSformer-
B, using CLIP-initialized weights pretrained on WebImage-
Text (WIT) [49] works slightly better than using those su-
pervised pretrained on ImageNet-21k [15, 61]. Second, if
we replace the visual encoder with a ViT-Base model as
in CLIP, the performance drops by 1.5% avg. mAP and
1.0% avg. nDCG, indicating the necessity of using spatial-
temporal visual encoder for learning video-language tasks.
Effect of batch size. We study the effect of batch size of
contrastive pre-training in Table 11b. The baseline method
follows EgoVLP [39] and uses a total batch size of 512.
We observe that the performance improves when increasing
the batch size to 1,024. The improvment diminishes if we
further increase the batch size to 2,048. Therefore, we use
1,024 as the default batch size to get our main results in
§5.1.

Effect of projection dimension. We compare different
choices of the projection head’s dimension in Table 1lc.
We can see that using 256 achieves the best performance
compared to 128 or 512.

Temperature in contrastive loss. In Table 12, we study
the effect of different temperatures in the contrastive loss
(Eq 4). Note that we switch to a batch size of 1,024 based
on the observation in Table 11b. We start with a learnable
temperature of 0.07 following CLIP [49]. We can see that
using a higher initial temperature 7,, for the pairs gener-
ated by NARRATOR achieves noticable gain over the one
that uses the same initial temperature of 0.07 for both 7,
and 7,,. We found that the within-batch accuracy during
contrastive training for NARRATOR’s pairs is significantly
higher than the one for REPHRASER’s pairs. Our conjec-
tion is that the dual-encoders is more likely to overfit the
NARRATOR’s pairs. Therefore, we switch to a fixed tem-
perature and find that using 7, = 7,, = 0.07 works better
than all other settings, such as learnable temperature.



Vis. Enc.  Vis. Enc.  Text Enc. Text avg avg.
arch. init. Enc. init. | mAP nDCG
TSF-B IN-21K  DistilBERT BC+Wiki | 24.1 28.0
TSF-B WIT DistilBERT BC+Wiki | 242  28.5
ViT-B WIT CLIP-GPT WIT 232 274
TSF-B WIT CLIP-GPT WIT 24.7 284

(a) initialization. IN-21K and WIT denote ImageNet-21k [15] and WebImage- (b) Batch size. Zero-shot performance im-
Text [49]. BC+Wiki denotes BookCorpus+English Wikipedia on which BERT is  proves when batch size increases from 512
pre-trained. Using CLIP-initialized weights works better than using those super- to 1,024.

vised pretrained on IK-21K.

Avg. Avg. Avg.  Avg.
mAP  nDCG mAP nDCG
24.7 28.4 Linear (128-d)| 24.1 27.8
25.6 28.8 Linear (256-d)| 24.7 28.4
25.6 28.5 Linear (512-d)| 24.5 28.1

(c) Projection head. Zero-shot performance
is affected by the hidden dimension of the pro-

jection head. Empirically using 256 yields a

best performance.

Table 11. Ablations of dual-encoder. We study how weight initialization (a), pre-training batch size (b), and project head dimension (c)

affect the zero-shot performance of the dual-encoder on EK-100 MIR.

Tr learn Tn learn | Avg. mAP Avg. nDCG
0.07 v n/a n/a 25.6 28.8
0.07 v 0.07 v 25.7 29.0
0.07 v 0.10 v 26.8 29.6
0.07 v 0.10 X 27.4 29.8
0.07 X n/a n/a 26.0 29.0
0.07 X 0.07 X 29.5 31.1
0.07 X 0.10 X 27.4 29.8

Table 12. Temperature in contrastive loss. We observe that
using a same fixed temperature for both NARRATOR’s pairs and
REPHRASER’s pairs works better than all other settings.

G. Qualitative Results

We provide more generated samples by our NARRATOR
and REPHRASER in Figure 7. Note that our NARRATOR can
generate reasonable captions from different views. For in-
stance, Figure 7(d) illustrates that NARRATOR can describe
the activities of both the camera wearer (starting with “C”,
which stands for “Camera wearer” in Ego4D) and the other
person (starting with “O”, which stands for “Observer” in
Ego4D.

H. Licenses

HMDB data is licensed under the CC BY 4.0 license and
the data is available at https://serre-lab.clps.
brown.edu/resource/hmdb-a-large-human-
motion-database/.

The images in Figs. 2 to 4 and 7 are adapted from Ego4D
videos. The video id ($vid) along with the start/end times-
tamp is provided below. The video can be viewed via the
url https://visualize.egod4d-data.org/Svid
(License is required for access).

* Figure 2:
lbfac46e-£957-4495-9583-dbd7£a683225,
01:30:00-01:50:00.

* Figure 3 (top):
06919917-76bc-4adc-b944-2a722£165513,
00:00:08-00:00:10.

Figure 3 (bottom):

cf7cl2db-1a%e-46d3-96d6-38174bbe373c,

00:21:17-00:21:19.

Figure 4:

3c0dffd0-e38e-4643-bc48-d513943dc20b,

00:00:12-00:00:14.

Figure 7 (a):

26054ab4-4967-47b5-9b6c-e8a62£9295€0,

00:08:09-00:08:10.

Figure 7 (b):

3130e00e-873a-4afb-93a6-7b07£3cf6597,

00:11:42-00:11:44.

Figure 7 (c):

def2e8dd-aaf7-467f-aa8f-46f654e6£f4e0,

00:09:08-00:09:009.

Figure 7 (d):

ab865129-78fa-47d4-8a50-££8c5533246f%,

00:04:10-00:04:12.

Figure 7 (e):

58a01f3a-52ce-4024-ab3c-bl79cafddafd,

00:28:43-00:28:45.


https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://visualize.ego4d-data.org/$vid
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Figure 7. More generated samples by our NARRATOR and
REPHRASER on Ego4D. NARRATOR generates new descriptions
of the action taking place, potentially focusing on other objects or
person being interacted with. REPHRASER not only changes the
word order of the human narration but also diversifies it by using
related verbs or nouns. Please refer to Appendix G for discussion.
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