
A. Radar Chart Figure 1 Details

We first describe how we plot the radar chart in Figure 1.

Each axis denotes a specific metric on one video under-

standing task. Each vertex denotes a ratio relative to our

performance, which is computed by normalizing the per-

formance of either LAVILA or previous SOTA by that of

LAVILA, and is in the range of (0, 1]. For illustrative pur-

pose, we set the radar chart’s origin to be 80% and outer-

most frame to be 100% so that the interval between neigh-

boring lattices to be 5%. The numbers annotated next to the

vertices are absolute value of performance without normal-

ization. Note that in other radar charts [69, 80], the axes

have different scales and interval values while the origin is

not valid, which may lead to potential fallacies.

Next we elaborate the evaluation metrics and previous

state-of-the-arts in each axis. For EK-100 MIR and Cha-

radesEgo, we compare our method to EgoVLP [39] in the

fine-tuned settings. For EgoMCQ, we compare our method

to EgoVLP [39] in the zero-shot settings. For EGTEA

recognition, the previous state-of-the-art is MTCN [33]. For

EK-100 CLS, we plot the action-level top-1 accuracy after

fine-tuning as it is the primary metric proposed in [14] (and

used in the EPIC challenges). The previous state-of-the-

art is Multiview Transformer (MTV) [79] pre-trained on a

private dataset. For UCF-101 and HMDB-51 classification,

we report the linear-probing mean accuracy following MIL-

NCE [44]. The previous state-of-the-art is TAN [25].

B. LAVILA Details

The algorithm of training LAVILA is given in Algo-
rithm 1. The loss is based on the CLIP [49]’s symmet-
ric cross-entropy loss over the similarity scores of samples

in the batch B̃l ∪ B̃u with minimal modifications. We ap-
ply two separate temperatures (τr, τn) for embeddings from
rephrased pairs and pseudo-captioned ones respectively,
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We ablate different choices of temperatures in Table 12.

C. Dataset Details

In this section, we provide details of the datasets where

we conduct experiments.

Ego4D. Ego4D contains 3,670 hours of egocentric videos

with temporally dense narrations. Each narration has a

timestamp and an associated free-form sentence. We con-

struct the video-text clip pairs that are used for pre-training

following [39]. First, we exclude 2,429 videos that appear

in the validation and test sets of the Ego4D benchmark.

Algorithm 1 One step of training LAVILA

Require: A subset of narrated (unnarrated) clips Bl (Bu)

clips with LM-generated narrations B̃l = {}, B̃u = {}
for (xi, yi) ∈ Bl do

u ∼ U(0, 1) ▷ Uniform sample between 0 and 1

if u < 0.5 then ▷ Query REPHRASER

y′i ∼ pREPHRASER(y
′|yi), τi ← τr

else ▷ Query NARRATOR

y′i ∼ pNARRATOR(y
′|xi), τi ← τn

end if

B̃l ← B̃l ∪ {(xi, y
′
i, τi)}

end for

for xi ∈ Bu do

y′j ∼ pNARRATOR(y
′|xi), τj ← τn

B̃u ← B̃u ∪ {(xj , y
′
j , τj)}

end for

Train FLAVILA(x, y) with the batch B̃l ∪ B̃u using Eq 4.

Next, we determine the each clip’s interval using the contex-

tual variable-length clip pairing strategy in [39]. Finally, we

drop the narrations that either contain “#unsure”/“#Unsure”

tags or are shorter than 4 words. This results in 4,012,853

video-text clip pairs with an average clip length of 1(±0.9)
second. For the excluded videos, we also pre-process sim-

ilarly and obtain 1,260,434 video-text clip pairs. We only

use them as validation split to measure the generation qual-

ity of NARRATOR in Table 7a.

EK-100. The Epic-Kitchens-100 (EK-100) dataset contains

100 hours of egocentric cooking videos. The training split

has 67,217 video clips; the validation split has 9,668 video

clips; the testing split has 13,092 video clips. Each clip is

annotated with (1) a start and end timestamp, (2) a short tex-

tual narration, and (3) a verb and noun class that the narra-

tion belongs to. The action class can also be uniquely deter-

mined by combining the verb and the noun. In the zero-shot

setting, we evaluate the pre-trained model on the validation

split directly without any tuning; In the finetuned setting, we

take the pre-trained model and perform end-to-end finetun-

ing on the training split and evaluate on the validation split.

For EK-100 MIR we use the textual narration while for EK-

100 CLS we use the class of verb, noun, and action as the

label. For EK-100 MIR, the evluation metrics are mean Av-

erage Precision (mAP) and normalized Discounted Cumu-

lative Gain (nDCG). For EK-100 CLS, the evaluation met-

rics are top-1 accuracies for verb, noun, and action. Action-

level accuracy is the most important one among all.

EGTEA. EGTEA contains 28 hours of egocentric cooking

videos with gazing tracking. In our experiments, we take as

input the visual frames only. The action annotations include

10,321 instances of fine-grained actions from 106 classes,

with an average duration of 3.2 seconds. In the zero-shot

setting, we evaluate the pre-trained model on the test set of



all three splits without any tuning and report results as the

mean accuracy averaged across all classes across all three

splits, as Li et al. [37] suggested. In the finetuned setting,

we follow prior works [33] and report top-1 accuracy and

mean class accuracy using the first train/test split, which

has 8,299/2,022 instances respectively.

CharadesEgo. The CharadesEgo dataset contains 7,860

videos of daily indoor activities from both third- and first-

person views. The annotations are 68,536 instances of fine-

grained actions from 157 classes. We use the first-person

subset only, comprising 3,085 videos for training and 846

videos for testing. We report video-level mAP as the eval-

uation metric. In the zero-shot setting, we evaluate the pre-

trained model on the test videos directly without any tuning;

In the finetuned setting, we perform end-to-end finetuning

on the trimmed action instances in the training split, which

has an amount of 33,114 action instances.

D. Implementation Details

D.1. Pre­training on Ego4D

We pre-train on the video-narration pairs from

Ego4D [24]. We train the model using AdamW with

(β1, β2) = (0.9, 0.999) and weight decay of 0.01 for 5

epochs. After the video-narrations pairs are augmented

by NARRATOR and REPHRASER, we find the zero-shot

performance keeps improving so the number of epochs is

increased to 12. We use a fixed learning rate of 3e-5. The

projection head after the dual-encoders is a linear layer with

an output dimension of 256. We use PyTorch’s native FP16

mixed precision training and gradient checkpoint. This

allows us to afford a per-gpu batch size of 32 over 32 GPUs

for TimeSformer-B and a per-gpu batch size of 16 over 64

GPUs for TimeSformer-L, resulting in a total batch size of

1,024. We abate these design choices in Appendix F.

For input, we first divide each video into 5-minute seg-

ments and scale the short side of the video to 288 pixels.

This signifantly reduces storage and accelerates decoding.

During training, we decode the corresponding segment that

contains the selected clip. We randomly sample 4 frames

between the start and end time of the clip and use standard

RandomResizedCrop (0.5, 1.0) for data augmen-

tation.

D.2. Training NARRATOR on Ego4D

Architecture. For the video encoder, we use the one we ob-
tain in Appendix D.1 and keep it frozen. We drop the global
average pooling layer and attach an attention pooling mod-
ule, which is instantiated by a standard cross-attention [66]
and a Layer Normalization [3]. The attention pooling uses
a fixed length of randomly initalized queries q ∈ RNq×Dt

to attend visual features v ∈ R(T×H′×W ′)×Dv . This results
in a fixed length of hidden states, AttentionPool(q,v) ∈
RNq×Dt , which will be later fed into the cross-attention

module of the text decoder. This ensures the text decoder
attends to the same number of visual features irrespective
of the input visual resolution, e.g. 224×224 or 336×336.
More concretely, AttentionPool(q,v) is computed as fol-
lows:

q
′
,v

′ = LayerNorm(q),LayerNorm(v),

headi = softmax

(

(q′W
(i)
Q )(v′WK)⊤
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d0

)

· (v′
WV ),

AttentionPool = Concat(head1, · · · , headh) ·WO,

where WQ ∈ RDt×d0 , WK/V ∈ RDv×d0 , and WO ∈

R(h·d0)×Dt .

For the text decoder, we use GPT-2 XL [50] and keep it

frozen. The video encoder and the text decoder is bridged

by a cross-attention module. Each cross-attention mod-

ule comprises a cross-attention layer followed by a feed-

forward network (FFN). Layer Normalization is added at

the beginning of both cross-attention and FFN. We add

tanh-gating [27] with an initial value of zero. We in-

sert one cross-attention module every two GPT2-Blocks

in GPT2 XL to save memory. Both the attention pool-

ing and cross-attention modules are learnable parameters,

which take less than 30% of the total parameters.

We train NARRATOR on the ground-truth video-

narration pairs from Ego4D [24]. The training recipe mostly

follows the one for pre-training the dual-encoders except

that we use FP32 to train NARRATOR because PyTorch’s na-

tive FP16 mixed-precision leads to training instability. We

use the video-text clip pairs from the Ego4D’s validation

videos to compute the word-level classification accuracy

and perplexity. We select the model with the highest ac-

curacy as well as lowest perplexity, which is often reached

after 3∼4 epochs. It takes around 2 days to train a NARRA-

TOR using 32 V100 GPUs.

D.3. Multi­Instance Retrieval on EK­100

We fine-tune the pre-trained model on EK100 using

AdamW with (β1, β2) = (0.9, 0.999) and weight decay of

0.01. We use cosine annealing with warmup, where the base

learning rate starts from 1e-6, linearly increases to a peak

of 3e-3 in the first epoch and then gradually decreases to

1e-5 following a half-wave cosine schedule. We apply the

multi-instance max-margin loss [75] with a margin value of

0.2. We use a per-gpu batch size of 16 over 8 GPUs for

TimeSformer-B and a per-gpu batch size of 4 over 32 GPUs

for TimeSformer-L. We use a stochastic depth ratio of 0.1

in the backbone.

For the input, we represent each video clip with 16 sam-

pled frames at both training and testing time. At training

time, We scale the short side of the video to 256 pixels and

then take a 224×224 crop while at testing time, we scale the

short side to 224 pixels and take the center 224×224 crop.



Method (Backbone) Pretrain
Top-1 accuracy

Verb Noun Action

IPL (I3D) [71] K400 68.6 51.2 41.0

ViViT-L [2] IN-21k+K400 66.4 56.8 44.0

MoViNet [34] N/A 72.2 57.3 47.7

MTV [79] WTS-60M 69.9 63.9 50.5

MTCN (MFormer-HR) [33] IN-21k+K400 +VGG-Sound 70.7 62.1 49.6

Omnivore (Swin-B) [22] IN21k+IN-1k +K400+SUN 69.5 61.7 49.9

MeMViT [76] K600 71.4 60.3 48.4

LAVILA (TSF-L) WIT+Ego4D 72.0 62.9 51.0

Table 9. The performance of action recognition on EK-100. We

report top-1 accuracy on verb, noun, and action. LAVILA outper-

forms all prior works in terms of action-level top-1 accuracy.

D.4. Action Recognition on EGTEA

We fine-tune the pre-trained model on EGTEA for 100

epochs using SGD with a momentum of 0.9 and weight de-

cay of 5e-4. We use cosine annealing with warmup, where

the base learning rate starts from 1e-6, linearly increases to a

peak of 3e-3 in the first epoch and then gradually decreases

to 1e-5 following a half-wave cosine schedule. We drop

the linear projection head and attach a 106-dim head for

classification. For LAVILA, we train the classification head

with 1× base learning rate and the backbone with 0.1×. For

visual-only video model pre-trained on Kinetics, we use 1×
base learning rate for both the classification head and the

backbone. We use a per-gpu batch size of 16 over 8 GPUs

for TimeSformer-B and a per-gpu batch size of 4 over 32

GPUs for TimeSformer-L. We use a stochastic depth ratio

of 0.1 in the backbone and a dropout of 0.5 before the clas-

sification head. We also use a label smoothing of 0.1.

For input, we randomly select a 32-frame video clip at

a temporal stride of 2 (namely 16×2) from each video at

training time. We scale the short side of the video to 256

pixels and then take a 224×224 crop. For data augmen-

tation, we use standard RandomResizedCrop (0.5,

1.0) and RandomHorizontalFlip(0.5). At test-

ing time, we evenly take ten 32-frame clips through the full

video. We scale the short side to 224 pixels and take three

spatial crops along the longer axis per clip. The final pre-

dictions are averaged over all these crops.

D.5. Action Recognition on EK­100

We fine-tune the pre-trained model on EK100 with a

same training schedule as in EGTEA. The only exception

is that we apply three classification heads for verb, noun,

and action separately because we empirically observe that

it speeds up convergence and performs slightly better than

using a single action-level classification head.

For the input, we represent each video clip with 16 sam-

pled frames at both training and testing time. At testing

time, we take three spatial crops along the longer axis per

clip and average the final predictions.

D.6. Action Recognition on CharadesEgo

Following EgoVLP [39], we convert the task of action

classification to that of video-text retrieval as follows: for

each trimmed video clip with textual annotations, we con-

sider it to be a valid video-text pair for training. Since

CharadesEgo is a multi-class dataset, which means each

trimmed video can be annotated with different classes, we

treat any trimmed video clip with N actions as N individ-

ual video-text pairs. We use the same InfoNCE [48] loss.

We fine-tune the pre-trained model on CharadesEgo using

AdamW with (β1, β2) = (0.9, 0.999) and weight decay of

0.01. We use cosine annealing with warmup, where the

peak learning rate is set to be 3e-5. For input, we randomly

select a 32-frame video clip at a stride of 2 from the trimmed

video at training time and evenly sample 16 frames from the

untrimmed video at testing time to calculate the video-level

mAP. We finetune the model for 10 epochs and report the

best performance.

D.7. LAVILA for Third­person Video Pre­training

The pre-training recipe mostly follows the one in Ap-

pendix D.1 except that when constructing a batch of sam-

ples, we sample one more hard negative clip from the same

video for each selected clip following [25].

When doing linear-probing evaluation, we keep the

video encoder frozen, extract video feature and train a lin-

ear SVM on top. For each video clip in either HMDB-51 or

UCF-101, we evenly take four 32-frame clips through the

entire video. We scale the short side to 224 pixels and take

the center crop per clip and pass through the frozen video

encoder to get the final visual embedding. For each test-

ing video, we average the prediction score from different

clips. We use scikit-learn’s LinearSVC and report the high-

est top-1 accuracy after sweeping the regularization param-

eter C ∈ {10−5, 10−4, 10−3, 10−2, 0.1, 1, 102, 103, 104}.

E. Additional Results

EK-100 CLS. We compare LAVILA representation on EK-

100 CLS in Table 9. We achieve state-of-the-art perfor-

mance in terms of top-1 action accuracy. Note that the

second best-performing Multiview Transformer [79] is pre-

trained on WTS-60M which is not publicly available.

More results on Semi-supervised Learning. Following

the setup in § 5.3, we provide more results in Figure 6 while

replacing the backbone of LAVILA with TimeSformer-

Large. We observe similar trends as § 5.3 where LAV-

ILA outperforms the ground-truth-only baseline at all data

points.

F. Additional Ablations

Improved Baseline on EK-100 MIR. We present an im-

proved baseline of video-language model pretrained on



LAVILA Baseline SOTA [39]

0% 20% 50% 100%

20

23

26

29

32

(a) EK-100 MIR mAP.

0% 20% 50% 100%

27

28.5

30

31.5

33

(b) EK-100 MIR nDCG.

0% 20% 50% 100%

28

30

32

34

36

(c) EGTEA mean accuracy.

0% 20% 50% 100%

52

54

56

58

60

(d) EgoMCQ Intra-video accuracy.

Figure 6. More results of LAVILA in a semi-supervised setting where only a limited amount of narrations are given. Both LAVILA

and the baseline use a TimeSformer-Large as the visual encoder backbone. Comparing zero-shot performance of pre-training, LAVILA

consistently outperforms the groundtruth-only baseline when 10, 20, 50,100% data is used.

EgoNCE CLIP-init. # frames Avg.

mAP

Avg.

nDCG

Extracted RGB frames

EgoVLP [39] 4 15.5 22.1

EgoVLP [39] ✓ 4 16.6 23.1

Videos (downsized to 480p)

EgoVLP [39] ✓ 4 22.3 27.4

EgoVLP [39] ✓ 16 23.6 27.9

Our impl. 4 24.1 28.0

Our impl. ✓ 4 24.7 28.4

Table 10. Improved baseline evaluted on EK-100 MIR. We ob-

serve that evaluting on videos directly improves the baseline no-

ticeably. Using CLIP-pre-trained encoder weights introduces ad-

ditional improvements. All gains shown in the paper are on top of

this already strong baseline (last row).

Ego4D and evaluate it on EK-100 MIR in a zero-shot setting

in Table 10. The initial baseline is video-language model

with a TimeSformer-Base as visual encoder and a Distil-

BERT as textual encoder, proposed in EgoVLP [39]. First,

we find that zero-shot evaluation on videos brings a notice-

able improvement than on extracted RGB frames. Particu-

larly, given the same EgoVLP+EgoNCE model, zero-shot

retrieval can increase by 5.7% average mAP and 4.3% aver-

age nDCG repespectively. This is probably because frame

extraction using ffmpeg’s default parameter downgrades the

image quality by a considerable amount. Second, under the

same video-as-input evaluation protocol, our implementa-

tion with the same backbone (TimeSformer-Base + Distil-

BERT) using standard InfoNCE loss without EgoNCE, can

achieve 24.1% and 28.0% average mAP and nDCG, bet-

ter than the EgoVLP with EgoNCE. Third, if we pretrain

the joint model using CLIP-pretrained models as the initial

weights, the zero-shot retrieval result can be further boosted

(+0.6% avg. mAP and +0.4% avg. nDCG), indicating that

egocentric video representation can also benefit from large-

scale image-text pre-training.

Starting from this improved baseline, we conduct more

ablations on pretraining the video-langauge model in Ta-

ble 11 as follows. We measure the performance by zero-

shot average mAP and average nDCG on EK-100 MIR.

Effect of weight initialization. We study the effect of ar-

chitectures and weight initialization in Table 11a. First, we

observe that using the same architecture of TimeSformer-

B, using CLIP-initialized weights pretrained on WebImage-

Text (WIT) [49] works slightly better than using those su-

pervised pretrained on ImageNet-21k [15, 61]. Second, if

we replace the visual encoder with a ViT-Base model as

in CLIP, the performance drops by 1.5% avg. mAP and

1.0% avg. nDCG, indicating the necessity of using spatial-

temporal visual encoder for learning video-language tasks.

Effect of batch size. We study the effect of batch size of

contrastive pre-training in Table 11b. The baseline method

follows EgoVLP [39] and uses a total batch size of 512.

We observe that the performance improves when increasing

the batch size to 1,024. The improvment diminishes if we

further increase the batch size to 2,048. Therefore, we use

1,024 as the default batch size to get our main results in

§ 5.1.

Effect of projection dimension. We compare different

choices of the projection head’s dimension in Table 11c.

We can see that using 256 achieves the best performance

compared to 128 or 512.

Temperature in contrastive loss. In Table 12, we study

the effect of different temperatures in the contrastive loss

(Eq 4). Note that we switch to a batch size of 1,024 based

on the observation in Table 11b. We start with a learnable

temperature of 0.07 following CLIP [49]. We can see that

using a higher initial temperature τn for the pairs gener-

ated by NARRATOR achieves noticable gain over the one

that uses the same initial temperature of 0.07 for both τr
and τn. We found that the within-batch accuracy during

contrastive training for NARRATOR’s pairs is significantly

higher than the one for REPHRASER’s pairs. Our conjec-

tion is that the dual-encoders is more likely to overfit the

NARRATOR’s pairs. Therefore, we switch to a fixed tem-

perature and find that using τr = τn = 0.07 works better

than all other settings, such as learnable temperature.



Vis. Enc.

arch.

Vis. Enc.

init.

Text Enc. Text

Enc. init.

avg

mAP

avg.

nDCG

TSF-B IN-21K DistilBERT BC+Wiki 24.1 28.0

TSF-B WIT DistilBERT BC+Wiki 24.2 28.5

ViT-B WIT CLIP-GPT WIT 23.2 27.4

TSF-B WIT CLIP-GPT WIT 24.7 28.4

(a) initialization. IN-21K and WIT denote ImageNet-21k [15] and WebImage-

Text [49]. BC+Wiki denotes BookCorpus+English Wikipedia on which BERT is

pre-trained. Using CLIP-initialized weights works better than using those super-

vised pretrained on IK-21K.

Batch

size

Avg.

mAP

Avg.

nDCG

512 24.7 28.4

1024 25.6 28.8

2048 25.6 28.5

(b) Batch size. Zero-shot performance im-

proves when batch size increases from 512

to 1,024.

Projection

head

Avg.

mAP

Avg.

nDCG

Linear (128-d) 24.1 27.8

Linear (256-d) 24.7 28.4

Linear (512-d) 24.5 28.1

(c) Projection head. Zero-shot performance

is affected by the hidden dimension of the pro-

jection head. Empirically using 256 yields a

best performance.

Table 11. Ablations of dual-encoder. We study how weight initialization (a), pre-training batch size (b), and project head dimension (c)

affect the zero-shot performance of the dual-encoder on EK-100 MIR.

τr learn τn learn Avg. mAP Avg. nDCG

0.07 ✓ n/a n/a 25.6 28.8

0.07 ✓ 0.07 ✓ 25.7 29.0

0.07 ✓ 0.10 ✓ 26.8 29.6

0.07 ✓ 0.10 ✗ 27.4 29.8

0.07 ✗ n/a n/a 26.0 29.0

0.07 ✗ 0.07 ✗ 29.5 31.1

0.07 ✗ 0.10 ✗ 27.4 29.8

Table 12. Temperature in contrastive loss. We observe that

using a same fixed temperature for both NARRATOR’s pairs and

REPHRASER’s pairs works better than all other settings.

G. Qualitative Results

We provide more generated samples by our NARRATOR

and REPHRASER in Figure 7. Note that our NARRATOR can

generate reasonable captions from different views. For in-

stance, Figure 7(d) illustrates that NARRATOR can describe

the activities of both the camera wearer (starting with “C”,

which stands for “Camera wearer” in Ego4D) and the other

person (starting with “O”, which stands for “Observer” in

Ego4D.

H. Licenses

HMDB data is licensed under the CC BY 4.0 license and

the data is available at https://serre-lab.clps.

brown.edu/resource/hmdb-a-large-human-

motion-database/.

The images in Figs. 2 to 4 and 7 are adapted from Ego4D

videos. The video id ($vid) along with the start/end times-

tamp is provided below. The video can be viewed via the

url https://visualize.ego4d-data.org/$vid

(License is required for access).

• Figure 2:

1bfac46e-f957-4495-9583-dbd7fa683225,

01:30:00-01:50:00.

• Figure 3 (top):

06919917-76bc-4adc-b944-2a722f165513,

00:00:08-00:00:10.

• Figure 3 (bottom):

cf7c12db-1a9e-46d3-96d6-38174bbe373c,

00:21:17-00:21:19.

• Figure 4:

3c0dffd0-e38e-4643-bc48-d513943dc20b,

00:00:12-00:00:14.

• Figure 7 (a):

26054ab4-4967-47b5-9b6c-e8a62f9295e0,

00:08:09-00:08:10.

• Figure 7 (b):

3130e00e-873a-4afb-93a6-7b07f3cf6597,

00:11:42-00:11:44.

• Figure 7 (c):

def2e8dd-aaf7-467f-aa8f-46f654e6f4e0,

00:09:08-00:09:09.

• Figure 7 (d):

ab865129-78fa-47d4-8a50-ff8c5533246f,

00:04:10-00:04:12.

• Figure 7 (e):

58a01f3a-52ce-4024-ab3c-b179caf4dafd,

00:28:43-00:28:45.

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://visualize.ego4d-data.org/$vid


Narration
C fits a glass cover 

on a sconce

NARRATOR

C holds the bulb holder 

with both gloved hands.

REPHRASER

On a sconce C uses a 

glass cover

C fixes a bulb on the 

bulb holder.
C has a glass cover 

on a sconce

C presses the bulb 

holder.

Narration A man B plays poker

NARRATOR

The man A drops the 

card on the table with 

his right hand.

REPHRASER
A a man B is a poker 

player

A man Y puts a card on 

the table.

Narration C scrubs the knife

NARRATOR

C scrubs knife.

REPHRASER
The knife is 

scrubbed by C

C washes the knife with 

a sponge
C scrubs spoon with 

scrubber 

Narration
C operates the 

camera

NARRATOR

C uses the camera.

REPHRASER

The camera is 

operated by C
C takes a photo shot.

C is the cameraman 

in charge of the film

A man X looks at the 

camera.

Narration

C adjusts the mortar 

on the ground with 

his hands
NARRATOR

C presses the clay 

together with his hands.

REPHRASER

With his hands C 

adjusts the mortar on 

the ground

C rolls clay mixture on 

the ground.

Figure 7. More generated samples by our NARRATOR and

REPHRASER on Ego4D. NARRATOR generates new descriptions

of the action taking place, potentially focusing on other objects or

person being interacted with. REPHRASER not only changes the

word order of the human narration but also diversifies it by using

related verbs or nouns. Please refer to Appendix G for discussion.
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