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In this Supplementary, we first show the complete proof
of the generalization error bound in Appendix A. Then, we
present the implementation details of the generator and the
discriminators in Appendix B. Visual illustrations of adver-
sarial examples crafted by different substitute models are
shown in Appendix C. The potential negative impact and
the limitations of our work are discussed respectively in Ap-
pendix D and E.

A. Proof of the Generalization Error Bound
We give the proof of the generalization error bound for

the black-box targeted adversarial attack task. First, we in-
troduce Rademacher Generalization Bound [2] which mea-
sures the difference between generalization and empirical
errors.

Lemma 1. (Rademacher Generalization Bound [1, 2])
Suppose that G is a class of function maps X −→ [0, 1]. Then
for any δ > 0, with probability at least 1 − δ and sample
size n, the following holds for all g ∈ G:

|ED(g)− ED̂(g)| ≤ 2Rn,D(G) +

√
log 2

δ

2n
, (1)

where the ED(g) is generalization risk of function g and
ED̂(g) is empirical risk of function g.

Definition 1. Given a hypothesis space H and a Hypothesis
Disparity Discrepancy function Γ, the GΓH is defined as
[1]:

GΓH = {x −→ Γ(h1(x), h2(x))|h1, h2 ∈ H}. (2)

Then, we prove the generalization error bound for the
black-box targeted attack task as follows,

Theorem 1. For any δ ≥ 0, with probability 1−δ and sam-
ple size n, we have the following generalization bound for
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the black-box classifier hb ∈ H and any substitute classifier
hs ∈ H,

EQ(hb, ft) ≤ ÊZ(hs, ft) + sup
h,h′∈H

ÊZ(h, h′) + Ω, (3)

where h and h′ are two classifiers sampled from H, Ê is the
empirical estimation of the generalization error, and Ω is a
minor term.

Proof.

EQ(hb, ft) ≤ EQ(hs, ft) + EQ(hs, hb)

≤ EQ(hs, ft) + sup
h,h′∈H

EQ(h, h′).

According to Lemma 1, for any hs ∈ H, we have:

EQ(hs, ft) ≤ ÊZ(hs, ft) + 2Rn,Q(H) +

√
log 2

δ

2n
.

Then, considering Lemma 1 and Definition 1, for any
h, h′ ∈ H, the following inequality holds [1]:

EQ(h, h′) ≤ ÊZ(h, h′) + 2Rn,Q(GΓH) +

√
log 2

δ

2n
.

Substituting these inequalities into the generalization
bound, we get:

EQ(hb, ft) ≤ ÊZ(hs, ft) + sup
h,h′∈H

ÊZ(h, h′)+

2Rn,Q(H) + 2Rn,Q(GΓH) + 2

√
log 2

δ

2n
.

To simplify the expression, we define Ω = 2Rn,Q(H) +

2Rn,Q(GΓH) + 2

√
log 2

δ

2n . Then, we have:

EQ(hb, ft) ≤ ÊZ(hs, ft) + sup
h,h′∈H

ÊZ(h, h′) + Ω.

Here we complete the proof.
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B. Implementation
B.1. The Implementation Details of Generator

For a fair comparison, we use the same network architec-
ture as in previous generative attacks [3, 4, 6]. The genera-
tor is composed of three downsampling blocks, six residual
blocks, and two upsampling blocks. The output of the gen-
erator is an adversarial sample with the same size as the
input image. The details of the network are shown in Fig. 1.

B.2. The Implementation Details of Discriminators

The discriminators can be any classification models sam-
pled from the whole hypothesis set. For a fair comparison,
we follow the previous targeted attack works [3] to attack
black-box models trained on ImageNet. The two discrimi-
nator models D1 and D2 in our method are derived from the
same naturally-trained ImageNet model. Since the training
data input to D1 and D2 are the same, the two models need
to be initialized differently to ensure the model discrepancy
loss works. We simply use a pre-trained model [5] for one
discriminator, and a model fine-tuned for a few steps on Im-
ageNet for another discriminator.

B.3. Data Augmentation

To further enhance the transferability of our adversarial
examples, we apply the same data augmentation methods
that TTP [3] uses during training, such as random rotation,
random flipping, color jittering, and so on.

C. Visualization
In Fig. 2, 3, 4, 5, 6, we illustrate different perturbations

produced by our M3D methods trained against ResNet50,
DenseNet121 and VGG19BN . The first column indicates
the clean images and their original category label. The other
columns represent different adversaries before and after clip
operation which are crafted against different models and the
target label.

D. Societal Impact
The threats of adversarial examples have raised great

concerns in the deep learning community as they can be
used maliciously in numerous security-sensitive applica-
tions, such as face recognition and autonomous driving.
While the targeted black-box attacks, aiming at mislead-
ing the black-box models by outputting a highly danger-
ous specified class, can cause more harmful results. Un-
derstanding the strength and mechanism of adversarial at-
tacks can reveal the vulnerability of real-world systems and
motivate the community to design stronger defenses in the
future. Though it is possible that our method can be mis-
used maliciously, we believe that the help of our paper to
researchers can outweigh the help of malicious attackers.

E. Limitation
Although our method outperforms existing state-of-art

methods by a large margin, currently, our method needs to
learn a generative model for each target class. Thus, effi-
ciency is limited when facing an increasing number of tar-
gets, such as hundreds or thousands of classes. In the future,
we plan to overcome this limitation by designing a condi-
tional generative method by considering the target class as
input.
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Figure 1. The network architecture of generator.

ResNet50Clean Image DenseNet121 Vgg19!"

Cannon Goose Goose Goose

Figure 2. Targeted adversaries crafted by M3D. Generators are trained against ResNet50, Densenet121 and Vgg19BN to target ’Goose’
distribution. The first row shows unrestricted outputs of an adversarial generator while the second row shows adversaries after clip opera-
tion. Perturbation budget is set to l∞ ≤ 16.
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Bulldog Cannon Cannon Cannon

Figure 3. Targeted adversaries crafted by M3D. Generators are trained against ResNet50, Densenet121 and Vgg19BN to target ’Cannon’
distribution. The first row shows unrestricted outputs of an adversarial generator while the second row shows adversaries after clip opera-
tion. Perturbation budget is set to l∞ ≤ 16.
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Model-T Model-T Model-TGrey-Owl
Figure 4. Targeted adversaries crafted by M3D. Generators are trained against ResNet50, Densenet121 and Vgg19BN to target ’Model-
T’ distribution. The first row shows unrestricted outputs of an adversarial generator while the second row shows adversaries after clip
operation. Perturbation budget is set to l∞ ≤ 16.
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Snowmobile Parachute Parachute Parachute
Figure 5. Targeted adversaries crafted by M3D. Generators are trained against ResNet50, Densenet121 and Vgg19BN to target ’Parachute’
distribution. The first row shows unrestricted outputs of an adversarial generator while the second row shows adversaries after clip opera-
tion. Perturbation budget is set to l∞ ≤ 16.
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Model-T Street-Sign Street-Sign Street-Sign
Figure 6. Targeted adversaries crafted by M3D. Generators are trained against ResNet50, Densenet121 and Vgg19BN to target ’Street-
Sign’ distribution. The first row shows unrestricted outputs of an adversarial generator while the second row shows adversaries after clip
operation. Perturbation budget is set to l∞ ≤ 16.
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