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1. Notations

Vectors are denoted by lower case bold face letters, e.g.,
positive and negative evidence α, β ∈ Rk. Vectors with
subscripts of indices, such as αi, βi indicate the i-th entry
in α, β. The Euclidean ℓ2-norm is denoted as ∥·∥. Scalars
are denoted by lowercase italic letters, e.g., η > 0. Matrices
are denoted by capital italic letters, e.g., X ∈ RC×H×W .
Proposition [u]+ denotes the projection of [u] on the non-
negative orthant.

Notations Descriptions

N Number of detected persons
M Number of detected objects
θ Parameters of the backbone to calculate ACO-R
x Input video
X Context feature
C,H,W Channel, height and width
A,O Actor (person) and object feature
F Actor-context-object relation feature
H Actor relational feature
ω Subjective opinion
b, d Belief and disbelief masses
u Uncertainty mass
W Non-informative prior weight
a Base rate
K Total number of classes
α, β Positive and negative evidence
p Class probability
γ The independence criterion relaxation of M-EDC
m primal-dual updating step

Table 1. Important notations and corresponding descriptions.

2. Proof Sketch of Proposition 1

Proposition 1. (Convergence of Averaged Primal Se-
quence) Under Assumption 1, when the convex set Θ is com-

pact, let the approximate primal sequence {θ̃
(m)

}∞m=1 be
the running averages of the primal iterates given in Equa-

tion (6). Then {θ̃
(m)

}∞m=1 can converge to its limit θ̃
∗
.

To prove the convergence in Proposition 1, we first prove
the below Lemma 1 that
Lemma 1. The approximate primal sequence {θ̃

(m)
}∞m=1

given in Equation (6) is a Cauchy sequence. That is ∀ϵ > 0,

there is a Q ∈ N such that ||θ̃
(m′)

− θ̃
(m)

|| ≤ ϵ, ∀m′,m ≥
Q.

Proof. Given Equation (6), we derive

θ̃
(m+1)

=
1

m+ 1

m∑
i=1

θ(i)

=
1

m+ 1

(
θ(m) +

m−1∑
i=1

θ(i))
=

1

m+ 1
θ(m) +

m

m+ 1
· 1

m

m−1∑
i=1

θ(i)

=
1

m+ 1
θ(m) +

m

m+ 1
θ̃
(m)

=
1

m+ 1
θ(m) + θ̃

(m) − 1

m+ 1
θ̃
(m)

.

(9)

Rearrange the above equation, we have

θ̃
(m+1) − θ̃

(m)
=

1

m+ 1
(θ(m) − θ̃

(m)
). (10)

Under Assumption 1, Θ is a compact convex set and

θ̃
(m)

,θ(m) ∈ Θ. Let m′ > m and ||θ̃
(m)

||, ||θ(m)|| ≤ G,
we have

||θ̃(m′) − θ̃
(m)|| = ||θ̃(m′) − θ̃

(m′−1)
+ · · ·+ θ̃

(m+1) − θ̃
(m)||

= ||
θ(m′−1) − θ̃

(m′−1)

m′ + · · ·+
θ(m) − θ̃

(m)

m+ 1
||

≤
||θ(m′−1)||+ ||θ̃(m′−1)||

m′ + · · ·+
||θ(m)||+ ||θ̃(m)||

m+ 1

≤
2G(m′ −m)

m+ 1
.

(11)

Therefore, for any arbitrary ϵ > 0, let 2G(m′−m)
m+1 < ϵ, and

we have ||θ̃
(m′)

− θ̃
(m)

|| ≤ ϵ. Therefore we conclude that

{θ̃
(m)

}∞m=1 is a Cauchy sequence.
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Next we prove the proposed Proposition 1.

Proof. As stated in Lemma 1 that {θ̃
(m)

} in Equation (6)
is a Cauchy sequence, it hence is bounded and there exists
a subsequence bn converging to its limit L. For any ϵ > 0,

there exists n, q ≥ Q satisfying ||θ̃
(n)

− θ̃
(q)

|| < ϵ
2 . Thus,

there is a bm = θ̃
(qm)

, such that qm ≥ Q and ||bqm −L|| <
ϵ
2 .

||θ̃(n) − L|| = ||θ̃(n) − bm + bm − L||

≤ ||θ̃(n) − bm||+ ||bm − L||

< ||θ̃(n) − θ̃
(q)||+ ϵ

2

< ϵ.

(12)

Since ϵ is arbitrarily small, we prove that the sequence

{θ̃
(m)

}∞m=1 converges to its limit L = θ̃
∗

asymptoti-
cally.

3. Proof Sketch of Proposition 2

Proposition 2. (Bounds for L(θ̃
(m)

) and the violation of

g(θ̃
(m)

) [5]) Let the dual sequence {λ(m)}∞m=1 be gener-

ated through Equation (8) and {θ̃
(m)

}∞m=1 be the averages
in Equation (6). Under Assumption 1, we have

1. An upper bound on the amount of constraint violation

of θ̃
(m)

that
∥∥[g(θ̃(m)

)
]
+

∥∥ ≤ λ(m)

mη2
.

2. An upper bound on L(θ̃
(m)

) that L(θ̃
(m)

) ≤ f∗ +
(λ(0))2

2mη2
+ η2L

2

2 , where
∥∥g(θ̃(m)

)
∥∥ < L and L > 0.

3. A lower bound L(θ̃
(m)

) ≥ f∗ − λ∗ ·
∥∥[g(θ̃(m)

)
]
+

∥∥.

where [u]+ denotes the projection of [u] on the nonnegative
orthant. f∗ is the optimal solution of Equation (5) and λ∗

denotes the optimal value of the dual variable.

Proof. 1. According to Equation (8), we have

λ(m) ≥ λ(m−1) + η2 ·
(
g(θ̃

(m)
)− γ − δλ(m−1)

)
.

Under Assumption 1, g(θ) is convex, we have

g(θ̃
(m)

) ≤ 1

m

m−1∑
i=1

g(θ(i))

=
1

mη2

m−1∑
i=1

η2g(θ
(i))

≤ 1

mη2
(λ(m) − λ(0))

≤ λ(m)

mη2
, ∀m ≥ 1.

(13)

Since λ(m) ≥ 0, we derive ||[g(θ̃
(m)

)]+|| ≤ λ(m)

mη2
.

2. Under Assumption 1 and Equations (7) and (8), we
have q∗ = f∗. Together with the condition that f(θ) is
convex and θ ∈ Θ, we have

L(θ̃(m)
) ≤

1

m

m−1∑
i=0

L(θ(i))

=
1

m

m−1∑
i=0

(
L(θ(i)) + λ(i)g(θ̃

(i+1)
)− λ(i)g(θ̃

(i+1)
)
)

=
1

m

m−1∑
i=0

(
L(θ(i)) + λ(i)g(θ̃

(i+1)
)
)
−

1

m

(m−1)∑
i=0

λ(i)g(θ̃
(i+1)

)

≤ q∗ −
1

m

m−1∑
i=0

λ(i)g(θ̃
(i+1)

).

(14)
From Equation (8), we have

(λ(i+1))2 =
([
λ(i) + η2

(
g(θ̃

(i+1)
)− γ − δλ(i)

)]
+

)2

≤
(
λ(i) + η2g(θ̃

(i+1)
)
)2

≤ (λ(i))2 + 2η2λ
(i)g(θ̃

(i+1)
) +

(
η2||g(θ̃

(i+1)
)||
)2

(15)
Rearrange the above equation, we have

−λ(i)g(θ̃
(i+1)

) ≤
(λ(i))2 − (λ(i+1))2 +

(
η2||g(θ̃

(i+1)
)||
)2

2η2
.

(16)

Taking −λ(i)g(θ̃
(i+1)

) back to L(θ̃
(m)

), we have

L(θ̃
(m)

) ≤ q
∗
+

1

m

m−1∑
i=0

(λ(i))2 − (λ(i+1))2 +
(
η2||g(θ̃

(i+1)
)||

)2

2η2

= q
∗
+

1

m

m−1∑
i=0

(λ(i))2 − (λ(i+1))2

2η2

+
1

m

m−1∑
i=0

(
η2||g(θ̃

(i+1)
)||

)2

2η2

= q
∗
+

(λ(0))2 − (λ(m))2

2mη2

+
η2

2m

m−1∑
i=0

||g(θ̃(i+1)
)||2

≤ f
∗
+

(λ(0))2

2mη2

+
η2L

2

2
.

(17)

3. By definition, ∀θ ∈ Θ, we have

L(θ) + λ∗ · g(θ) ≥ L(θ∗) + λ∗ · g(θ∗) = q(λ∗). (18)

Since θ̃ ∈ Θ, ∀m ≥ 1, we have

L(θ̃(m)
) = L(θ̃(m)

) + λ∗ · g(θ̃(m)
)− λ∗ · g(θ̃(m)

)

≥ q(λ∗)− λ∗ · g(θ̃(m)
)

≥ q(λ∗)− λ∗ ·
[
g(θ̃

(m)
)
]
+

≥ f∗ − λ∗ ·
∥∥[g(θ̃(m)

)
]
+

∥∥.
(19)



m PE / NE / PNE / Belief
iterations Method Error ↓ AUROC ↑ AUPR ↑ FPR at 95% TPR ↓

MULE 11.22 / 40.14 / 12.18 / 27.91 86.92 / 63.54 / 85.25 / 83.41 96.18 / 89.90 / 93.46 / 90.90 4.98 / 5.09 / 4.51 / 9.15

w/o ACO-R 50.12 / 50.04 / 12.45 / 39.84 51.23 / 51.12 / 84.88 / 82.41 86.11 / 86.36 / 88.13 / 92.35 15.23 / 15.56 / 34.44 / 9.57
w/o Beta-ENN 35.12 / 35.31 / 35.12 / 34.78 57.10 / 57.59 / 57.88 / 57.01 85.71 / 85.65 / 85.66 / 85.66 12.03 / 13.00 / 14.98 / 15.32m

=
2

w/o M-EDC 13.16 / 46.32 / 12.16 / 38.23 86.00 / 50.13 / 85.12 / 83.05 95.12 / 90.67 / 92.45 / 89.19 6.31 / 5.05 / 5.01 / 9.59
MULE 11.01 / 45.05 / 11.17 / 27.86 86.81 / 58.23 / 85.25 / 85.18 98.48 / 95.65 / 99.41 / 90.44 4.58 / 5.00 / 3.98 / 9.09

w/o ACO-R 48.34 / 50.32 / 17.77 / 47.79 52.78 / 50.15 / 83.34 / 79.26 86.39 / 83.39 / 93.93 / 88.93 13.35 / 15.01 / 25.93 / 10.00
w/o Beta-ENN 32.64 / 45.12 / 50.14 / 21.71 61.41 / 55.23 / 80.12 / 83.23 83.67 / 83.39 / 84.03 / 88.66 12.21 / 15.23 / 12.24 / 22.22m

=
3

w/o M-EDC 10.12 / 48.12 / 11.86 / 38.43 80.12 / 52.01 / 84.38 / 73.94 93.34 / 93.41 / 98.92 / 89.33 5.15 / 6.03 / 7.41 / 10.70
MULE 11.28 / 47.12 / 11.17 / 27.52 86.56 / 59.01 / 85.13 / 84.72 99.43 / 88.98 / 99.40 / 90.42 4.64 / 5.02 / 3.21 / 9.09

w/o ACO-R 50.21 / 51.71 / 17.64 / 49.35 52.35 / 50.01 / 84.17 / 80.33 83.36 / 83.49 / 94.97 / 88.21 11.02 / 12.65 / 33.33 / 10.23
w/o Beta-ENN 42.04 / 50.15 / 48.14 / 29.21 83.01 / 51.36 / 89.33 / 59.63 87.21 / 93.39 / 84.29 / 86.48 10.01 / 12.12 / 14.00 / 9.70m

=
4

w/o M-EDC 13.35 / 48.01 / 10.86 / 34.28 82.51 / 50.21 / 85.51 / 78.26 93.34 / 93.93 / 98.94 / 89.17 5.69 / 6.16 / 3.73 / 9.62
MULE 10.22 / 44.32 / 11.15 / 27.49 86.86 / 58.87 / 85.30 / 84.66 99.52 / 96.35 / 99.41 / 90.41 4.32 / 5.00 / 3.09 / 9.09

w/o ACO-R 49.61 / 50.00 / 16.61 / 48.82 51.01 / 51.97 / 84.78 / 81.29 82.16 / 83.33 / 98.05 / 88.09 10.23 / 12.68 / 37.04 / 9.16
w/o Beta-ENN 41.34 / 49.67 / 49.21 / 10.75 84.83 / 52.41 / 82.91 / 90.44 86.13 / 93.40 / 87.27 / 90.29 9.97 / 11.98 / 12.68 / 13.01m

=
5

w/o M-EDC 11.09 / 48.01 / 10.86 / 32.14 79.34 / 50.98 / 85.12 / 75.23 93.33 / 94.02 / 98.94 / 91.14 5.39 / 5.79 / 3.70 / 7.11

Table 2. Exploration of different component in MULE with m = 2, 3, 4, 5.

PE / NE / PNE / Belief Closed SetBackbone Pre-train Error ↓ AUROC ↑ AUPR ↑ FPR at 95% TPR ↓ mAP ↑

ACAR, R-50 [6] K400 35.16 / 35.56 / 23.12 / 30.15 52.89 / 58.48 / 60.16 / 57.17 79.15 / 80.17 / 83.48 / 81.48 14.16 / 15.49 / 20.19 / 11.15 28.84
ACAR, R-101 [6] K700 32.26 / 34.12 / 20.54 / 30.16 55.18 / 58.98 / 63.18 / 60.18 82.15 / 81.48 / 85.48 / 90.01 10.16 / 15.01 / 19.48 / 10.00 33.30
AIA, R-101 [9] K700 35.14 / 34.56 / 25.01 / 32.14 54.17 / 59.48 / 59.78 / 59.69 78.49 / 80.17 / 86.15 / 91.48 10.15 / 13.98 / 18.48 / 9.68 32.30
Slowfast, R-101 [3] K600 60.12 / 59.12 / 23.15 / 40.15 50.15 / 52.23 / 69.14 / 68.15 70.15 / 75.15 / 69.68 / 68.21 20.17 / 19.56 / 23.12 / 26.15 29.00
DEAR, R-50 [1] K400 23.22 / 42.15 / 23.15 / 30.19 82.12 / 60.12 / 80.48 / 83.59 83.15 / 88.14 / 90.15 / 85.49 8.45 / 8.48 / 6.30 / 13.15 18.51
AFAC, R-101 [?] K600 53.14 / 49.41 / 40.15 / 59.17 79.69 / 65.89 / 80.48 / 79.79 90.79 / 89.18 / 88.18 / 85.15 7.15 / 8.79 / 4.01 / 8.98 30.20

Ours, R-50 K400 11.22 / 40.14 / 12.18 / 27.91 86.92 / 63.54 / 85.25 / 83.41 96.18 / 89.90 / 93.46 / 90.90 4.98 / 5.09 / 4.51 / 9.15 27.80
Ours, R-101 K700 10.12 / 40.15 / 10.56 / 25.02 88.75 / 65.36 / 89.48 / 84.26 98.18 / 89.95 / 94.74 / 90.49 4.17 / 5.28 / 4.25 / 10.01 29.87

Table 3. Comparison with state-of-the-art on AVA [4]. Ours is highlighted in green. Best value is in bold.

4. Proof Sketch of Proposition 3
The Beta loss in Equation (2) is equivalent to the loss

function used in DEAR when each actor is associated with
one action only. The Evidential Neural Network (ENN),
which was initially introduced in [7] and further adopted by
DEAR in open-set action recognition, is limited to classify-
ing an actor associated with only one action. The key idea
of ENN is to replace the output of a classification network
with the parameters {αi}Ki=1 of K Dirichlet densities. To
detect a novel actor with multiple actions, in this work, we
modify ENN by estimating parameter pairs {αi, βi}Ki=1 of
K Beta distributions. Proposition 3 shows that the Beta loss
of an actor proposed in Equation (3) is equivalent to the loss
function in DEAR when K = 1.
Proposition 3. Denote L′

j(θ) as the loss function intro-
duced in [7], i.e.,

L′
j(θ) =

K′∑
i=1

yij
(
ψ(

K′∑
i=1

αij)− ϕ(αij)
)
, (20)

where K ′ is the total number of classes in a multi-class clas-

sification task. Denote Lj(θ) is the loss function proposed
in Equation (3). We have L′

j(θ) = Lj(θ) when K = 1 (i.e.,
K ′ = 2).

Proof. When K = 1,

Lj(θ) =
∑1

i=1

∫ [
BCE(yij , pij)

]
Beta(pij ;αij , βij)dpij .

(21)
To simplify, we omit the subscript i and rewrite

Lj(θ) =

∫ [
BCE(yj , pj)

]
Beta(pj ;αj , βj)dpj

= yj
(
ψ(αj + βj)− ψ(αj)

)
+ (1− yj)

(
ψ(αj + βj)− ψ(βj)

)
.

(22)
As for L′

j(θ), K = 1 indicates binary classification which
refers K ′ = 2.

L′
j(θ) =

∫ [
CE(yj , pj)

]
Dir(pj ;αj , βj)dpj

=

2∑
i=1

yij
(
ψ(

2∑
i=1

αij)− ψ(αij)
)
.



PE / NE / PNE / Belief Closed SetBackbone Pre-train Error ↓ AUROC ↑ AUPR ↑ FPR at 95% TPR ↓ mAP ↑

AFAC, R-101 [?] K600 7.00 / 26.62 / 8.88 / 19.17 82.20 / 69.62 / 82.15 / 87.00 90.15 / 85.12 / 90.15 / 89.15 35.19 / 29.55 / 23.15 / 31.15 48.10
AFAC, CSN-152 [?] IG-65M 6.18 / 19.78 / 8.49 / 15.59 80.12 / 61.02 / 90.48 / 84.88 90.79 / 86.36 / 91.15 / 85.67 30.15 / 33.15 / 28.42 / 30.01 50.30
CSN, CSN-152 [10] IG-65M 6.89 / 25.18 / 9.02 / 18.90 80.15 / 70.15 / 90.15 / 87.01 92.61 / 90.17 / 90.99 / 85.15 35.16 / 30.15 / 35.98 / 26.69 46.40
Slowfast, R-101 [3] K600 25.15 / 30.15 / 46.12 / 23.00 79.12 / 75.12 / 75.36 / 78.89 79.15 / 80.15 / 80.46 / 80.08 50.15 / 56.15 / 46.12 / 29.16 45.20
DEAR, R-50 [1] K400 12.15 / 25.59 / 11.11 / 16.98 86.15 / 79.15 / 82.46 / 82.55 92.35 / 90.33 / 89.26 / 90.19 29.96 / 26.16 / 23.99 / 28.98 38.12
X3D-XL [2] K600 8.45 / 25.85 / 10.15 / 15.51 82.15 / 66.64 / 85.00 / 82.15 86.49 / 80.16 / 90.15 / 88.15 39.98 / 36.14 / 26.15 / 30.55 47.20

Ours, R-50 K400 6.15 / 23.15 / 7.89 / 17.11 85.49 / 65.17 / 88.79 / 88.49 90.78 / 92.78 / 94.15 / 95.03 25.98 / 25.29 / 25.49 / 23.64 45.33
Ours, R-101 K700 6.23 / 22.15 / 7.02 / 20.15 88.49 / 65.01 / 89.41 / 82.16 91.15 / 90.78 / 95.42 / 90.15 25.15 / 21.16 / 26.46 / 28.98 47.21

Table 4. Comparison with state-of-the-art on Charades [8]. Ours is highlighted in green. Best value is in bold.

We complete the proof by setting α1j = αj and α2j =
βj .

5. Detailed Ablation Study
In Table 2, we provide a detailed ablation study on the

AVA dataset [4] to explore the contributions of different
components in our framework. Along with the primal-dual
updating step m = 2, 3, 4, 5, the performance is slightly
improved but nearly saturated when m = 2.

6. Full Experimental Results
As presented in Table 3 and Table 4, we report the re-

sults of compared methods by using all four novelty score
estimation mechanism. It is worth mentioning that other
state-of-the-arts perform also well by using the belief based
score in terms of some metrics.

Furthermore, we show more visual results of compared
methods in Figure 1 and Figure 2. It can be seen that our
method performs better than other methods on two datasets
for single/multi-actor settings.
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Figure 1. Visual comparison with our method and state-of-the-art on AVA [4]. Cyan and yellow boxes denote the predictions of actors with
known and novel actions, respectively. ✓ marks and ✗ marks indicate correct and false predictions, respectively.
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Figure 2. Visual comparison with our method and state-of-the-art on Charades [8]. Cyan and yellow boxes denote the predictions of actors
with known and novel actions, respectively. ✓ marks and ✗ marks indicate correct and false predictions, respectively.
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