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A. Overview
The supplementary material includes sections as follows:

• Section B: A formal introduction to Discrete Cosine
Transform.

• Section C: Datasets and evaluation metrics.

• Section D: More implementation details.

• Section E: Comparisons of PoseFormerV2 and a sim-
ple baseline model purely in the frequency domain.

• Section F: Generalization of our approach to more
models.

• Section G: Visualizations and analysis.

• Section H: Broader impacts and limitations.

B. Discrete Cosine Transform
We now give a formal introduction to DCT. Given a 2D

joint sequence denoted by x ∈ RF×J×2, where F is the
sequence length and J is the joint number in each frame,
the trajectory of the x (or y) coordinate of the j-th joint de-
noted as xj,0 ∈ RF (or xj,1 ∈ RF , both denoted by x̂j for
convenience) is a 1D time series and we apply DCT to each
trajectory (J ∗ 2 trajectories in total) individually.

For trajectory x̂j , the i-th DCT coefficient is calculated
as
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where δi1 = 1 when i = 1, otherwise δi1 = 0. Each
time step in trajectory yields one DCT coefficient, i.e., i ∈
{1, 2, · · · , F}. DCT coefficients encode multiple levels of
temporal information in the input time series. Specifically,
low-frequency coefficients (i.e., when i is small) encode the
rough contour of the input sequence while high-frequency
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coefficients (i.e., for the large i) encode details, e.g., jitters
or sharp changes in the input sequence. The original input
sequence in the time domain can be restored using Inverse
Discrete Cosine Transform (IDCT), which is given by
xj,f =
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and f ∈ {1, 2, · · · , F}. DCT is lossless if we keep all its
coefficients intact. In practice, we can slightly lossily re-
cover the input sequence using only a few low-frequency
coefficients and set other coefficients to zero. It is worth
noting that the recovered curve would be smoother com-
pared to the original one since we discard some of the high-
frequency coefficients. This property of DCT is desirable –
only a small proportion of DCT coefficients are enough to
represent the whole input sequence, even in a cleaner man-
ner. This motivates us to use such representation to effi-
ciently operate long sequences while improving the robust-
ness of the model to low-quality 2D detection where high-
frequency noise often occurs.

C. Datasets and Evaluation Metrics
Human3.6M is the most widely used benchmark for 3D

human pose estimation. Over 3.6 million video frames are
captured indoors from 4 cameras at different places. This
dataset contains 11 subjects performing 15 different actions,
e.g., “Walking” and “Phoning”. We train our model on 5
subjects (S1, S5, S6, S7, S8) and use other 2 subjects (S9,
S11) for testing, following [1, 6, 10, 15].

MPI-INF-3DHP is collected in both controlled indoor
environments and challenging outdoor environments. It
also provides different subjects and actions from multiple
camera views similar to Human3.6M.

Evaluation Metrics. We report two common metrics,
MPJPE and P-MPJPE [14] on Human3.6M. MPJPE (Mean
Per Joint Position Error, referred to as Protocol 1) measures
the mean Euclidean distance between the estimated 3D pose
and the ground truth 3D pose. P-MPJPE (Protocol 2) ap-
plies a rigid transformation to the estimated 3D pose and
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the distance is computed between the aligned estimated 3D
pose and the ground truth 3D pose.

For the MPI-INF-3DHP dataset, we report MPJPE, Per-
centage of Correct Keypoint (PCK) within the 150mm
range, and Area Under Curve (AUC) as in [1, 5, 12].

D. More Implementation Details
Our method is built upon PoseFormerV1 [15]. Aiming

at better demonstrating the effectiveness of our DCT co-
efficient representation of input sequences and providing
fair comparisons to PoseFormerV1, we directly adopt op-
timal hyper-parameters for model architecture from Pose-
FormerV1, although further investigation may bring addi-
tional improvements.

Model architecture hyper-parameters. The embedded
feature dimension c in the spatial transformer is 32 and the
layer number of the spatial transformer and feature-fusion
transformer is 4, following [15]. Plus, the design of Spatial-
Temporal Positional Embedding is also adopted from [15].

Experimental settings. Our experiments are conducted
with Pytorch [9] on a single NVIDIA RTX 3090. For both
training and testing, we apply horizontal flipping augmen-
tation following [1, 6, 10, 15]. We train our model using the
AdamW [7] optimizer for 80 epochs with a weight decay
of 0.1. The initial learning rate is set to 8e-4 with an ex-
ponential learning rate decay schedule and the decay factor
is 0.99. We adopt the CPN [2] 2D pose detection on Hu-
man3.6M, following [1, 6, 10]. As for the MPI-INF-3DHP
dataset, we use ground truth 2D detection, following [5, 8].

E. Simple Baseline
In our approach, the temporal encoder of PoseFormerV1

[15] is reformulated as a Time-Frequency Feature Fusion
module and we show that the low-frequency coefficients of
the input sequence help improve the efficiency of the model
to process long sequences and its robustness against noisy
joint detection. Given the effectiveness of this representa-
tion, readers may raise a question: Why not entirely ex-
tract features from DCT coefficients of the input sequence
but additionally combine them with features in the time do-
main? Here we design a baseline model where we simply
replace the input to PoseFormerV1 [15] (joint coordinates
in the time domain) with low-frequency DCT coefficients
of the input sequence. The full sequence length and the
number of the retained DCT coefficients (denoted as n) are
kept the same for the baseline model and our approach. For
convenience, the number of frames (f ) as input into the
spatial encoder of PoseFormerV2 is set to n. We provide
quantitative results to demonstrate that this straightforward
approach does not work well, especially when the ratio be-
tween the full sequence length and n is increased (see Table
1). The features of only a few central frames in the sequence

Table 1. Comparisons of PoseFormerV2 and a simple base-
line. The evaluation is performed on Human3.6M (Protocol 1,
MPJPE) [3] and the Frame Number (f ) is only applicable to Pose-
FormerV2.

Frame
Number (f )

Coefficient
Number (n)

Full
Length Baseline PoseFormerV2

3 3 9 50.2 49.5 (0.7↓)
3 3 27 48.7 47.9 (0.8↓)
3 3 81 49.7 47.1 (2.6↓)
9 9 27 48.8 47.6 (1.2↓)
9 9 81 47.8 46.0 (1.8↓)

significantly boost accuracy, e.g., with 3 central frames of
the full input sequence of length 81, the MPJPE is reduced
from 49.7mm to 47.1mm (5.2%↓, the 3rd row in Table 1).

Intuitively, the spatial encoder of PoseFormerV2 that en-
codes joint coordinates of a few central frames in the time
domain helps capture the fine-grained human motions, ben-
efiting 3D pose estimation for the frame at the sequence
center. In contrast, low-frequency coefficients of the input
sequence filter out high-frequency noise and human mo-
tion details (e.g., fast motions) that may be informative to
human pose estimation (i.e., the over-smoothing problem).
Therefore, features from the time domain and frequency do-
main, i.e., the joint coordinate of central frames and low-
frequency coefficients of the sequence, carry complemen-
tary semantics. These considerations necessitate our pro-
posed Time-Frequency Feature Fusion design.

F. Generalization to More Models

In the main text, we focus on improving PoseFormerV1
[15] from a barely explored frequency-domain perspective.
In this part, we show that the proposed frequency-domain
approach also generalizes well to other existing state-of-the-
art methods, e.g., MixSTE [13] and MHFormer [4]. Since
these approaches [4, 13] also apply self-attention along
the time dimension to all frames as PoseFormerV1 [15],
the proposed method can be easily incorporated into their
model without complex redesigns for model architecture.
For fair comparisons, we directly adopt optimal hyper-
parameters (e.g., the layer number, channel dimension) for
these original methods. Further tuning of hyper-parameters
may bring additional improvements.

MixSTE [13] adopts the spatial-temporal architecture
as PoseFormerV1 [15]. Compared to the spatial-then-
temporal paradigm of PoseFormerV1, MixSTE alternately
uses spatial and temporal transformer encoders. Similarly,
we centrally sample a few video frames from a longer se-
quence as input into the spatial encoders of MixSTE. For
temporal encoders, we append the time-domain features
(the output of the spatial encoders) with the embedding of
low-frequency coefficients of the complete input sequence.
The comparisons of MixSTE and its improved version are
presented in Fig. 1, 2. Original MixSTE is highly com-
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Figure 1. Comparisons of MixSTE [13] and its improved version
with frequency representations of the sequence on Human3.6M
[3]. RF: Receptive Field and k×RF indicate that the RF of
MixSTE is expanded by k× with a few low-frequency DCT coeffi-
cients of the full sequence. The proposed approach helps MixSTE
gain a better speed-accuracy trade-off. (Best viewed in color)

Figure 2. Comparisons of MixSTE [13] and its improved version
using low-frequency DCT coefficients of the sequence in terms
of robustness to noise on Human3.6M [3]. Zero-mean Gaussian
noise of standard deviation sigma is added to ground truth 2D de-
tection, and we show their performance drop (�MPJPE) as sigma
increases. The size of markers indicates the computational cost of
models.

putationally expensive and our approach improves its effi-
ciency and accuracy simultaneously, e.g., MixSTE achieves
46.2mm MPJPE taking 30.8 GFLOPs, while its improved
version achieves 45.3mm MPJPE with 15.4 GFLOPs (2×
faster and 1.9%↑ error reduction, see the bright red curve
in Fig. 1). We also show that our method improves
the robustness of MixSTE against noisy 2D joint detec-
tion (Fig. 2). Specifically, we add zero-mean Gaussian
noise to the ground-truth 2D joint sequence of 27 frames

Figure 3. Comparisons of MHFormer [4] and its improved version
using low-frequency DCT coefficients of the sequence in terms
of robustness to noise on Human3.6M [3]. Experimental settings
follow Fig. 2. The size of markers indicates the computational
cost of models.

on Human3.6M [3]. The improved MixSTE (denoted as
MixSTE+) uses 3 central frames as input to its spatial en-
coders and the first 3 DCT coefficients as a cleaner global
representation of the full sequence. MixSTE+ suffers from
less performance drop while being 6× more efficient (30.8
GFLOPs vs. 5.1 GFLOPs, indicated by the marker size).

MHFormer [4] introduces multiple hypotheses into its
architecture to model depth ambiguity of body parts and un-
certainty of joint detectors and is thus relatively robust (ex-
perimental results are available in the main paper). Besides,
MHFormer also includes spatial-temporal transformer mod-
ules as in PoseFormerV1 [15]. To further verify the uni-
versality of our approach, we similarly improve MHFormer
following MixSTE+. Experimental evidence shows that the
proposed method promotes the robustness of MHFormer
while reducing its computational cost (see Fig. 3), even
though it already equips itself with prior knowledge of noisy
joint detection. Therefore, this result demonstrates that, in
terms of improvements in the robustness of models, our
method is compatible with other approaches.

We have so far generalized our approach to other two
transformer-based methods, i.e., MixSTE [13] and MH-
Former [4]. We may explore the generalization of the pro-
posed method to a wider range of model architectures in the
future, such as CNN-based and GNN-based methods in 3D
human pose estimation. Moreover, we believe our method
can also be utilized in other tasks, especially skeleton-based
ones where the computational cost of long-sequence pro-
cessing and the quality of human skeleton representations
can become problems.
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(a) (b)

(c) (d)

Figure 4. Qualitative results of PoseFormerV2 under challenging in-the-wild images: (a) Occlusions; (b)(c) Missed 2D joint detection; (d)
Switched 2D joints. We highlight the unreliable 2D detection with light-yellow circles and corresponding 3D pose estimations with orange
circles. PoseFormerV2 shows great robustness to imperfect 2D joint detection.

G. Visualizations and Analysis

In this section, we provide a series of qualitative results
on challenging in-the-wild images to showcase the robust-
ness of PoseFormerV2 in real scenarios.

Fig. 4 presents several representative hard cases with
HRNet [11] 2D joint detection: (a) Occlusions where joints
overlap with each other; (b)(c) Missed joints; (d) Switched
joints. Specifically, the right arm of the person in the 4th
image of (b) and the left arm of the person in the 3rd im-
age of (c) are missed. Moreover, in the 2nd image of (d),
two legs of the person are switched (highlighted with light-
yellow circles). Despite the imperfect 2D joint input, Pose-
FormerV2 still infers correct positions for these joints in 3D
space (marked with orange circles).

Analysis. The robustness of PoseFormerV2 is at-
tributed to the usage of an appropriate representation – low-
frequency DCT coefficients – of the input joint sequence,
instead of hand-crafted modules that may bring additional
computational cost such as the multi-hypothesis generation
module in [4]. Low-frequency DCT coefficients provide a
global vision of the input sequence and therefore the noise
contained in individual video frames is dwarfed. This uti-
lization of DCT coefficients also brings an extra advan-
tage to PoseFormerV2, the temporal consistency of the es-

timated 3D pose between adjacent frames. We provide a
video demo to illustrate that the proposed method keeps
an excellent consistency (i.e., temporal stability) under ex-
tremely corrupted 2D joint detection.

H. Broader Impacts and Limitations
Broader impacts. In this paper, we attempt to reconcile

two critical issues in real-scenario applications of 3D HPE,
i.e., the efficiency of models to process long sequences for
improved precision and their robustness against noisy 2D
detection as high-quality joint sequences are hard to obtain.
To encourage more real-world applications, we may shift
our research focus from marginal improvements on care-
fully controlled datasets to overcoming the drawbacks of
existing approaches in practical use. We expect more re-
search to follow this line.

On the other hand, this work is done based on a scarcely
investigated frequency method, i.e., Discrete Cosine Trans-
form (DCT) which plays an important role in conventional
image compression algorithms. We hope this research will
inspire more research to revisit traditional signal processing
techniques as various data we treat in the deep learning era
is actually signals of different forms. An appropriate com-
bination of these choreographed techniques and recently de-
veloped deep learning approaches may bring surprising ad-
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vantages.
Limitations. Our method includes two important hyper-

parameters – the number of sampled central frames and
that of the kept DCT coefficients of the complete input
sequence. Currently, they are chosen on the basis of ex-
perimental results or human experience for the trade-off
between speed and accuracy. In the future, we may re-
shape them as learnable parameters that can be automat-
ically learned from input data, or we may further theoreti-
cally formulate the optimal choices for them, thus removing
the need for parameter-searching.
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