
Rethinking Gradient Projection Continual Learning: Stability / Plasticity
Feature Space Decoupling
(Supplementary Material)

In this supplementary material, we first prove the equiv-
alence between updating the model in the null space and
updating the model in the direction orthogonal to the fea-
ture space. Then we give the proof of the given Subspace
Intersection Algorithm and Subspace Sum Algorithm (i.e.,
Algorithm 1 and Algorithm 2 in body text). After that, we
give a proof of the applicability of the proposed Feature
Space Paradigm to gradient projection methods [1–4]. After
that, we present the implementation details of TRGP+SD
and Adam-NSCL+SD. Finally, we provide additional data
of our Space Decoupling (SD) algorithm.

1. Appendix A
Theorem 1. Given a feature matrix M and the new gra-
dient g, updating g in the null space of M and updating g
in the direction orthogonal to the feature space of M are
equivalent.

Proof. Denote the feature space and the null space of M as
S and N respectively. By applying SVD to M , we have

U,Σ, V T = SV D(M) (1)

where U = [U1, U2] and Σ =

[
Σ1 0
0 Σ2

]
. All singular

values of zero are in Σ2 [4], thus we have S = span{U1}
and N = span{U2}, which implies that S and N are a pair
of orthogonal complementary subspaces. Thus we have

g = ProjN (g) + ProjS(g)

= gU2(U
T
2 ) + gU1(U

T
1 ).

(2)

By constraining the gradient update gN to lie in the null
space N , we have

gN = ProjN (g) = gU2(U
T
2 ) (3)

By constraining the gradient update gS to be orthogonal to
S, we have

gS = g − ProjS(g) = g − gU1(U
T
1 ) = gU2(U

T
2 ). (4)

It is clear that gN = gS , which proves the equivalence be-
tween updating the model in the null space and updating the
model in the direction orthogonal to the feature space.

2. Appendix B
In this section we give the proof of the given Subspace

Intersection Algorithm and Subspace Sum Algorithm (i.e.,
Algorithm 1 and Algorithm 2 in body text).

2.1. Subspace Intersection

Consider two subspaces P = span{P },Q = span{Q}
in a d-dimensional space, where P = [p1,p2, · · · ,pk1 ] ∈
Rd×k1 ,Q = [q1, q2, · · · , qk2 ] ∈ Rd×k2 . According to the
definition of the subspace intersection, i.e.,

P ∩Q = {α|α ∈ P,α ∈ Q} (5)

we have

α = γ1 · p1 + γ2 · p2 + · · · γk1
· pk1

= β1 · q1 + β2 · q2 + · · ·βk2
· qk2

(6)

which is equivalent to the following homogeneous linear
equation:

[P ,−Q] · [γ1, · · · , γk1
, β1, · · · , βk2

]T = 0. (7)

As a result, by calculating the basic solutions N ∈
R(k1+k2)×k, we have

P ∩Q = span{P ·N [0 : k1]} (8)

where k is the rank of the basic solutions.

2.2. Subspace Sum

The correctness of the Subspace Sum Algorithm is very
obvious. We first remove the common bases in Q be-
tween P and Q, which is achieved by calculating Q̂ =
Q − (PP T )Q. Then we orthogonalize Q̂ and append the
new bases to P .

3. Appendix C
In this section we give a proof of the applicability of

the proposed Feature Space Paradigm to gradient projec-
tion methods [1–4]. Since the applicability of the proposed
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paradigm to Orthogonal based approaches like GPM [3] and
TRGP [2] is obvious, we only prove the case of Null-space
based approaches like Adam-NSCL [4] and AdNS [1].

Following Adam-NSCL [4], we denote Xp as the input
feature of the p-th task, and X̄(t) = [X1, X2, · · · , Xt] as
the concatenation of input features of task 1, 2, · · · , t, ignor-
ing the layer-wise notation. Null-space based approaches
constrain the gradient of task t + 1 to lie in the null space
of χ̄(t) =

∑t
i=1 χi, where χi = (Xi)

TXi is the uncentered
feature covariance. This is equivalent to constraining the
gradient to be orthogonal to the feature space of χ̄(t) ac-
cording to Section 1. We denote this feature space as S̄a(t),
and the feature space generated by X̄(t) as S̄b(t). Accord-
ing to GPM [3] and TRGP [2] we have

S̄b(t) = S̄b(t− 1) + Sb
t (9)

where Sb
t is the task-specific feature subspace generated by

Xt. Similarly, we define the feature space generated by
χt as Sa

t . Next, to verify the applicability of the proposed
paradigm, we only need to prove

S̄a(t) = S̄a(t− 1) + Sa
t . (10)

According to Adam-NSCL [4] and AdNS [1], the null
space of the input feature is equivalent to the null space
of the uncentered feature covariance. Then, since the null
space and the feature space are a pair of orthogonal com-
plementary subspaces, we have Sa

t = Sb
t , thus Eq.(10) is

proved according to Eq.(9). As a result, the applicability
of the proposed paradigm to Null-space based approaches
[1, 4] is proved.

4. Appendix D
In this section, we present the implementation details of

TRGP+SD and Adam-NSCL+SD.
For TRGP+SD, we follow the implementation of TRGP

[2]. On 10-split-CIFAR100 and 20-split-CIFAR100 we use
a version of 5-layer AlexNet with an initial learning rate
of 0.01, while on 20-split-MiniImageNet we consider a re-
duced ResNet18 with an initial learning rate of 0.1. The
batch size is 64 for all datasets. In I/R Approximation we
set ϵI = 0.99 and ϵR = 0.92, while in I/R Projection the
constraint strength ζI is set to 1e−6 and ζR is set to 5e−5.

For Adam-NSCL+SD, we follow the implementation of
Adam-NSCL [4]. We use ResNet18 with an initial learning
rate of 5e − 5 for all datasets. The batch size is set to 32
for 10-split-CIFAR-100 and 16 for the other two datasets.
In I/R Approximation we set ϵI = 5 and ϵR = 12, while
in I/R Projection the constraint strength ζI is set to 1e− 6
and ζR is set to 5e− 5. Note that here the hyper-parameter
ϵI and ϵR correspond to the hyper-parameter a adopted by
Adam-NSCL’s approximation strategy, the larger of which
indicates the fewer dimension of the feature space.

5. Appendix E
In this section we provide additional data of our Space

Decoupling (SD) algorithm. Shown in Table 1, we present
the dimension of R(t), R̂(t), I(t) and Î(t) in each task.

task R(t) R̂(t) I(t) Î(t)
2 152 104 7 6
3 199 106 14 13
4 240 110 24 18
5 280 130 33 28
6 295 156 45 41
7 333 179 51 46
8 378 199 58 52
9 444 229 62 54

10 498 268 67 59

Table 1. Mean dimension of R(t), R̂(t), I(t) and Î(t). The
experiment is implemented by GPM+SD on 10-split-CIFAR-100
for a random seed. Here “mean dimension” is the average of the
dimension of layer-wise feature spaces (rounded numbers).
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