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A. Overview

In this supplementary document, we first introduce the

hand saliency network to assist our ViT sketcher’s training

in Sec. B. Then, we explain the way to construct the partner

domain to assist our dual adversarial discrimination (DAD)

scheme in Sec. C. After that, we describe the data augmen-

tation strategies used in each piece of training in Sec. D.

We further add more experimental results of our methods

(Sec. E), as well as the discussions about its failure cases

(Sec. F). They were not included in the main paper due to

the page limit.

B. Hand Saliency Estimation

Utilization. Our estimator regresses the visible hand

saliency M(X) ∈ [0, 1](h,w) from a hand-centered image

X ∈ R
(3,h,w). Because S is also an image domain con-

taining bare hand structure, the estimator is also compati-

ble with regressing M(S) from S. Compared with those

generic instance segmentation approaches [2, 8], M(X)
may be imperfect, but it is sufficient to reduce the ef-

fect of the background. Furthermore, as shown in Fig. 6,

M [S(X)] is more valuable for our task, which retains the

complete bare hand structure defined in S. In our frame-

work, M(X) plays the following roles: (i) m(X)⋆ =
MaxPool(M(X), p) is used as a teacher to provide patch-

wise saliency supervision during training of the sketcher’s

MLP. (ii) M [S(X)] is used as a mask to compute MSE only

for the background part during the training of the translator.

(iii) M [S(X)] is utilized as a mask to extract domain fea-

tures only for the non-background part within DNN percep-

tual metrics.

Architecture. As illustrated in Fig. 1, a header composed

of two parallel convolution layers is first used to extract fea-
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tures from input images. Subsequently, those two branches

are concatenated and fed into an encoder. The encoder is

composed of 5 residual blocks, each of them combined with

2D convolution layers and rectified linear unit functions. As

a result, receptive fields with gradual enlargement are ob-

tained. The decoder adopts a symmetric structure similar to

the encoder that also consists of 5 stacked residual blocks

but with up-sampling behind each block. For the first de-

coder layer, after scaling up by up-sampling, the feature

map produced by the last encoder layer was concatenated

with the later encoder layer. Similarly, other decoder lay-

ers do the same up-sampling and concatenate with the en-

coder output with the same resolution. Except for the last

layer, leaky-ReLU is adopted for activation. Finally, a hand

saliency with 256 × 256 is estimated.

Figure 1. Hand saliency estimation network. We use an

encoder-decoder architecture network to estimate hand saliency.

We do the skip connection between the encoder and decoder with

the same resolution.

C. Partner Domain Construction

The partner domain B̃ provides a bridge for unpaired

translation from source domain A to target domain B ac-

cording to our DAD scheme. During the training of our
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translator, X
B̃
∈ B̃ is augmented by XB ∈ B as follows:

X
B̃
= Ñ(XB)

= (1−M [S(X)])⊙XB +M [S(X)]⊙D(XB)
(1)

where M [S(X)] ensures that the degradations only occur in

the hand region. D(XB) is used to simulate various mark-

ers, gloves, and objects. In practice, we create a variety of

hand-specific degradations: (i) Spot degradations centered

at visible hand joints. The locations are estimated by the

off-the-shelf 2D key-point estimator [11]. (ii) Line degra-

dations distributed along visible hand affinities [3], i.e. be-

tween adjacent visible joints. (iii) Region degradations ap-

proximated by randomly enclosing polygons in M [S(X)];
(iv) Whole degradation in M [S(X)]. The number and color

of each degradation type are random. They are interpolated

randomly with the original pixel value. Some examples are

shown in Fig. 5.

D. Training Data Augmentation

Image domain. During the training of the MLP, discrete

VAE{Ts,Fs}, attention decoder Es, and translator G, the

following data enhancement methods are adopted to aug-

ment the input RGB: (i) flip randomly up-down and left-

right; (ii) rotate θ ∈ U(−π, π) randomly centered on the

hand area; (iii) scale s ∈ U(0.8, 1.2) randomly centered

on the hand area; (iv) blur randomly with a kernel size

k ∈ U(3, 9).
Structure domain. The structure map represented as depth

Sd or IUV Suv used in ablations is augmented in the same

way as the RGB image. For normal map Sn, because the

pixel with the 2D coordinate (u, v) records the normal di-

rection of the hand surface point in the camera coordinate

system, it also changes after a flip or rotation augmentation:

Sn(u, v)
′ = R(θ) · Sn(u, v) (2)

where θ is the accumulated angle from flip and rotation.

Other forms of augmentation do not cause changes in the

normal vector.

E. More Experiments

Human perceptual metrics. The human perceptual survey

about the translation authenticity of the results from differ-

ent frameworks is completed in Amazon Mechanical Turk

(AMT). At the beginning of the questionnaire, participants

were instructed to select one ªrealº candidate in each ques-

tion that best matches the appearance of the bare hand and

is most consistent with the semantics in the source image.

We collect 2K questionnaires and use the percentage of each

method’s score divided by the total number of people (2K)

as the evaluation of the translation quality of each method,

with higher scores representing better results. As shown in

Tasks A1 → B ↑ A2 → B ↑

CycleGAN [12] 18.46%± 0.9% 22.59%± 1.7%
GANerated [5] 14.51%± 2.3% 17.47%± 2.0%

H-GAN [6] 11.12%± 1.7% 9.91%± 2.8%
UAG [1] 13.93%± 0.4% 12.59%± 1.2%
CUT [7] 21.26%± 1.6% 23.19%± 3.2%

Ours 28.16%± 1.1% 32.37%± 2.3%

Table 1. AMT perceptual evaluation. AMT real vs fake test on

A1 → B and A2 → B.

Estimator Openpose [3] SRNet [11]

Dataset Version Original Translated Original Translated

FPHAB [4] 0.81 0.85 0.86 0.91
FreiHand [13] 0.87 0.92 0.89 0.93

Table 2. Hand pose estimation performance on the original

datasets and their appearance recovery version translated by our

framework. PCK0.2 score is adopted as the accuracy criterion.

Tab. 1, our framework obtains the majority of votes for best

translating from both A1 → B and A2 → B. It is worth

noting that not all participants evaluated all six methods due

to the random assignment process. However, the number of

participants in each method evaluated ranged from 55% to

60% of the total number of participants, for this reason, our

numbers may be different from the original baselines. The

translation quality of CUT [7] is second, and several other

methods [1,5,6,12] based on cycle consistency have poorer

quality in our task.

Improvement to pose estimation. We quantitatively eval-

uated the effect of recovering the bare appearance on the

accuracy of hand pose estimation. Two different 2D pose

estimators [3, 11] are adopted to estimate the accuracy of

key-points localization before and after restoring the bare

appearance for data from two datasets [4, 13]. As shown in

Tab. 2, the accuracy of the pose estimators is generally im-

proved on the datasets with recovered appearance. This is

one of the most direct ways our framework can contribute

to downstream tasks.

Universality of structure domain. In our framework, a

bare structure prior defined on a standardized domain is

built explicitly. Interestingly, in Splice-ViT [9], a similar

domain is constructed in its implicit appearance wrapping

process. As shown in Fig. 2, in the first few iterations, the

translator in Splice-ViT tends to translate the structural ref-

erence to a uniform domain that contains only visible struc-

ture information. This finding indirectly confirms that the

design of our framework to disentangle the bare structure is

reasonable and efficient.

More recovery results. We show more qualitative results

for our framework in hand appearance recovery from A1 →
B in Fig. 7 and A2 → B in Fig. 8. The sampled hand region



Figure 2. Splice-ViT wrapping process. From left to right: the

structure reference, the appearance reference, the wrapping results

in the first few iterations, and the final wrapping results.

Figure 3. Severe degradation cases. When the input appearance

is severely degraded, our model is not rotation-invariant.

[M ](X) and the disentangled structure map S(X) are also

comprehensively illustrated for each example.

An interesting phenomenon is that during the translation

A2 → B, the object may be partially removed (the part that

occludes the hand) or completely removed. This may be be-

cause we do not assign as much weight to the constrained

background-consistent MSE loss in training as pix2pix [10].

In this way, the object part outside the bare hand region

may also be penalized by the result discriminator D
(r)
B

in

our DAD scheme, which makes the translator tend to erase

them.

F. Failure Cases

As shown in Fig. 3, our framework is unstable when the

input is severely degraded. In this case, hand features come

entirely from the illusions of our CNN translator, which has

anisotropic convolution kernels.
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Figure 4. Additional hand saliency results on different do-

mains. From left to right: hand saliency estimations on domain

B, hand saliency estimations on domain A1 and hand saliency es-

timations on domain A2.

Figure 5. Degradation process to obtain partner domain.

From left to right: a.Input images; b.Combined with spot

and line degradations based on visible hand joints and affini-

ties. c.Polygon-based region degradations. d.Mask-based whole

degradations.
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