
The Resource Problem of Using Linear Layer Leakage Attack in Federated
Learning: Supplementary Material

Sparse
MANDRAKE

Robbing
the Fed

CIFAR-100 77.5% (4957) 77.1% (4931)
MNIST 71.0% (4546) 75.1% (4803)
Tiny ImageNet 77.8% (4978) 77.7% (4970)

Table 1. Total leakage rate of sparse MANDRAKE and Robbing
the Fed on various datasets. For all three datasets, 100 aggregated
clients and batch size of 64 were used (6400 total images).

A. Leakage rate and reconstructions
Table 1 gives the leakage rate on the MNIST [6], CIFAR-

100 [4], and Tiny ImageNet [5] datasets using sparse MAN-
DRAKE and Robbing the Fed [3] as discussed in the main
paper. We use a batch size of 64 with 100 clients, and the
ratio of FC size to batch size is 4:1 (256 unit FC layer). The
leakage rate on CIFAR-100 and Tiny ImageNet are roughly
the same for both methods. Sparse MANDRAKE [7] has a
slightly lower leakage rate than Robbing the Fed on MNIST.

Figure 1 shows the ground truth and reconstructions for
a single, random client with a batch of 64 on Tiny Ima-
geNet using the sparse MANDRAKE attack. 50 images were
leaked from the client.

B. Trap weights under FL
We show the leakage rate using the trap weights at-

tack [2] for different FC layer sizes on the downsampled
Tiny ImageNet (32x32x3) dataset. We tune the scaling fac-
tor between 0.90 and 0.99 (step size of 0.01) to find the
highest leakage rate, vary the FC layer ratio (FC layer size
= batch size × num. clients × FC size ratio), and report
the average over 10 runs. We apply this on several numbers
of clients and Figure 2 shows the results compared to bin-
ning [3], which has roughly the same leakage rate regardless
of the number of clients. Even while maintaining the same
ratio between the FC layer size and total number of images,
the leakage rate when using trap weights decreases as the
number of clients increases.

We note that by using sparsity, trap weights are able to
overcome this scalability problem. However, since the bin-
ning method of Robbing the Fed achieves a higher leakage
rate for all FC layer size ratios, it is still a better choice.

C. Sparse variant of Robbing the Fed
The sparse variant of Robbing the Fed (RtF) [3] is a

method introduced in addition to their baseline in order to
apply the attack in the FedAVG setting. The ”sparsity” men-
tioned in Section 4.3 of the RtF paper is discussing how to
create activations in the fully-connected (FC) layer such that
images should only activate a single neuron instead of a set
of neurons. However, this does not reduce the resource us-
age added from the attack, which is what we address. With
the main change being in the activation function, the same
fundamental method as the baseline is used with aggregated
updates and the FC layer size still needs to scale to compen-
sate for the total number of images. These layers added to
the model will still be fully dense with non-zero parameters.

D. Evaluating information leakage using mu-
tual information

In practice, the amount of leaked information is typically
quantified as the number of images a malicious server re-
constructs (leaked). However, the reconstructions from the
attack module can also leak some additional information
that is not counted in the leakage rate. For example, while
reconstructions of images can overlap, an observer can still
obtain information about the training data (e.g., a malicious
server who sees an overlap of digits 2, 3, and 8 might be
able to identify that an 8 is in the reconstruction). In Sec-
tion 4, we compared how much information was leaked to
the server under a varying FC layer size using either the
binning and trap weights method of linear layer leakage at-
tacks, since MANDRAKE is able to use both.

We used the MNIST dataset for these experiments, and
in order to measure the amount of information leaked into
the gradient and the amount of information the server was
able to reconstruct out of it, we compare the mutual infor-
mation between: (1) the data batch xinput

k at user i and the
aggregate gradient g of the attack at the server; (2) the data
batch xinput

k and the reconstructions xk at the server for user
k. Note that by the data processing inequality, we have that:

I(xinput
k ;xk)

I(xinput
k ; g)

≤ 1. (1)
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(a) Ground truth (b) Reconstruction

Figure 1. Reconstructed images from Tiny ImageNet from a random client with a batch size of 64 using MANDRAKE. The ground truth
images (a) are shown on the left and the reconstructed images (b) are shown on the right. Any empty boxes within the reconstructed images
indicate that reconstruction failed due to an overlap of image activations.
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Figure 2. Leakage rate using trap weights (TW) for a batch size
of 64 on Tiny ImageNet and varying the FC layer size ratio and
number of clients. The leakage rate decreases with an increasing
number of clients even if the ratio of FC size to total number of
images remains the same. Binning (Robbing the Fed) has a higher
leakage rate at all scales of FC size.

since the leaked images were reconstructed only using the
gradient. In order to compute the mutual information terms
in (1), we use the Mutual Information Neural Estimator
(MINE) which is the SOTA method [1] to estimate the mu-
tual information between two random vectors. For each FC
layer size, we sampled 20,000 random batches of the users’
data and used each to compute the aggregate gradient g and
reconstructed images for a single user i. These 20,000 sam-
ples were used by MINE to estimate mutual information.

This same procedure was repeated multiple times in or-
der to get multiple mutual information estimates and the av-
erage ratio was reported.

E. FedAVG

Unlike the gradients of the FC layers, the gradients of
the convolutional layer are not necessary for the data recon-
struction attack. A malicious server can then send a mali-
ciously crafted model which would freeze the parameters of
the convolutional layer to prevent changes from occurring
over the local iterations of FedAVG.
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