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Supplementary Material

A. Overview

In the supplementary paper, we first present the details of
our method (Section B), our evaluation metrics (Section C),
our experiments (Section D), and the data processing (Sec-
tion E), respectively. We then compare our approach with
an additional baseline (Section F) and conduct more abla-
tion studies (Section G) to verify the effectiveness of differ-
ent modules in our method.

Besides the paper, we strongly recommend watching our
video to visualize our approach and its synthesis effects.

B. Method Details

Section B.1 shows the loss design of our planner (see
Section 4.2 in the main paper) in detail, while Section B.2
provides the details of loss functions in our synthesizer (see
Section 4.3 in the main paper). In the following subsections,
we use hatted symbols (e.g. Ĉi,j) to denote network predic-
tions, and vise versa (e.g. Ci,j) for the ground truth values.

B.1. Definitions of Loss Functions in Planner

In this section, any notation with hat indicates a ground
truth value. We first define our BCE loss Lflag as:

Lflag =

5∑
i=1

M∑
j=1

N∑
k=1

BCE(ĉijk, cijk)

+

5∑
i=1

M∑
j=1

N∑
k=1

T∑
t=1

BCE(f̂n,ijkt, fn,ijkt)

+

5∑
i=1

M∑
j=1

N∑
k=1

T∑
t=1

BCE(f̂c,ijkt, fc,ijkt),

(1)

in which the subscript 1 ≤ t ≤ T indicates a sampled
frame index in time-continuous part.

Two L2 loss functions Ltip and Lvec are defined as:

Ltip =

5∑
i=1

M∑
j=1

N∑
k=1

T∑
t=1

ĉijk(∥Ĵtip
start,ijkt − Jtip

start,ijkt∥
2
2

+ ∥Ĵtip
end,ijk − Jtip

end,ijk∥
2
2),

Lvec =
∑

joint∈{dip,pip,mcp,root}

Lvec(joint),

Lvec(joint) =

5∑
i=1

M∑
j=1

N∑
k=1

T∑
t=1

ĉijk(∥D̂joint
start,ijkt −Djoint

start,ijkt∥
2
2

+ ∥D̂joint
end,ijk −Djoint

end,ijk∥
2
2),

(2)

where j denotes the index of the stage that contains frame t,
and k ∈ {1, 2, 3, root} indicates different joints on a finger.

The KL-Divergence loss LKLD is defined as:

LKLD = KL(Q(z|µ, θ2)∥N (0, I)). (3)

B.2. Definitions of Loss Functions in Synthesizer

The L2 loss Ltip for measuring fingertip positions is de-
fined as:

Ltip(θt) =

5∑
i=1

N∑
k=1

(fn)i,t,k

∥MANO(Jtip
i ;β, θt)− Jtip

i,t,k∥
2,

(4)

where MANO(Jtip
i ;β, θt) [3] computes the tip position

of finger i given the MANO parameter {β, θt}, and Jtip
i,t,k

indicates the target fingertip position in the t-th frame with
respect to the information from the k-th object part, which is
the linear interpolation from the two directly predicted fin-
gertip positions {(J1)

tip
i,t,k, (J2)

tip
i,t,k} in the finger embed-

dings (F1)i,t,k, (F2)i,t,k. The target fingertip position is
then transformed into the world coordinate frame.

The L2 loss Ljoint for measuring finger joint direction
vectors is defined as:

1



Ljoint(θt) =

5∑
i=1

N∑
k=1

∑
joint

(fn)i,t,k

∥MANO(Jjoint
i ;β, θt)

−MANO(Jtip
i ;β, θt)−Djoint

i,t,k ∥2,

(5)

where MANO(Jjoint
i ;β, θt) is each of the joint posi-

tions of finger i given the MANO parameter {β, θt}, and
Djoint

i,t,k is the target joint orientation, similarly interpolated
and transformed from the predicted D as in Equation (4).

The temporal smoothness loss Lsmooth is defined as:

Lsmooth(θ) =

T∑
t=2

∥θt − θt−1∥2. (6)

We use j(t) to denote the stage index containing the time
t. To define the contact loss Lcontact, we first find all frame-
finger index tuples (i, t, k) satisfying (fc)i,t,k = 1, indicat-
ing where contact should take place. For each of such tuple
(i, t, k), we search for a local surface section (M′

k)t,i of the
contacting object part Mk. (M′

k)t,i is set to be the closest
section to the predicted reference frame Vi,j(t),k where all
the vertex normals in such a local section are within a fixed
included angle range α = 45◦ compared to the predicted
contact normal Ni,j(t),k. We calculate the signed distances
{di,t,k,l}n(i)l=1 from each of the finger vertices to (M′

k)t,i,
as well as the corresponding nearest points {pi,t,k,l}n(i)l=1 on
(M′

k)t,i, where n(i) is the number of vertices on the i-th
finger. The contact loss Lcontact is designed to attract the
nearby finger vertices to the local surface section:

Lcontact(θ
′) =

∑
(fc)i,t,k=1

n(i)∑
l=1

ci,t,k,l

· ∥MANO(vertexi,l;β, θ
′
t)− pi,t,k,l∥2,

(7)

where ci,t,k,l = e−(∥di,t,k,l∥2−minl∗∥di,t,k,l∗∥2) provides
centralized coefficients for such finger vertices.

Similar to {di,t,k,l}n(i)l=1 and {pi,t,k,l}n(i)l=1 , we compute
{d′

i,t,k,l}
n(i)
l=1 and {p′

i,t,k,l}
n(i)
l=1 that are towards the whole

object part Mk but not the local (M′
k)t,i, and thus define

the penetration loss Lpenetr as:

Lpenetr(θ
′) =

∑
i,t,k

n(i)∑
l=1

pi,t,k,l · c′i,t,k,l

· ∥MANO(vertexi,l;β, θ
′
t)− p′

i,t,k,l∥2,

(8)

where c′i,t,k,l = e−(∥d′
i,t,k,l∥

2−minl∗∥d′
i,t,k,l∗∥

2), and
pi,t,k,l = 1 only if the hand vertex penetrates the object
part in frame t.

C. Metric Details
In this section, we introduce our evaluation metrics (see

Section 5.4 in the main paper) in detail.

C.1. Contact-Movement Consistency

We evaluate whether the object’s movement can align
with the contact forces produced by hand-object contacts,
using the same physics model as in ManipNet [4].

Following [4], for each part of the object in a single video
frame, we calculate the change of linear momentum Ṗ and
angular momentum L̇.

P (t) = Mv(t),

Ṗ (t) = Mv̇(t),

L(t) = I(t)ω(t),

L̇(t) = İ(t)ω(t) + I(t)ω̇(t),

I(t) = R(t)I0R(t)T ,

İ(t) = Ṙ(t)I0R(t)T +R(t)I0Ṙ(t)T ,

Ṙ(t)T = [ω(t)]R(t).

(9)

The linear and angular velocities v, ω and accelerations
v̇, ω̇ of a part can be calculated from its trajectory, and R(t)
is the rotation matrix of the part in frame t. The mass M
is set to 1 since we do not set constraints on the attitude of
forces on the fingers. We stack Ṗ and L̇ into b.

For each frame, we also calculate the force the fingers
can apply on the object. First, we find all the contact points
on the object mesh, which are less than 2mm from the fin-
gers. To model frictional contact, we use four bases to ap-
proximate Coulomb’s friction cone. We use 0.35 as the fric-
tion coefficient. We additionally add opposite force bases
with the same coefficient variables on both parts of an ar-
ticulated object, perpendicular to the spin axis of the ob-
ject, modeling the articulation. We also add the supporting
force basis of the part if the part is considered on the world’s
ground, which is to have an altitude above the lowest within
5mm.

Let K denote the number of force bases. We compute
the force and torque for each part in frame t:

F (t) =

K∑
i=1

Vi(t)xi(t) +Mg,

τ(t) =

K∑
i=1

[ci(t)− o(t)]Vi(t)xi(t),

(10)

where V is the force basis at each contact point, c is
the corresponding contact point, and o is the part center of
mass. x = [x1(t), x2(t), · · · , xK(t)]T are the non-negative

2



coefficients that we can apply along each force basis. Since
both F (t) and τ(t) in Equation (10) are linear w.r.t. x, we
denote the right part of Equation (10) as a linear transfor-
mation Ax+ b, where A ∈ R(3+3)×K and b ∈ R3+3.

Given a pose trajectory for an object part, we can ap-
proximate the velocity and acceleration of the object part,
hence computing the expected values of F (t) and τ(t) that
could force the object to move along such a trajectory. Let
c denotes the 6D concatenation [F (t), τ(t)]T . We thus find
an optimal x that minimize ∥Ax + b − c∥2 with the con-
straint x ≥ 0. Only if minx∥Ax + b − c∥2 < 0.01 do we
consider a frame is consistent between contact and object
movement. As one of our evaluation metrics, we compute
the proportion of such consistent frames among all video
frames.

C.2. Articulation Consistency

We evaluate whether the hand pose can control the object
state in a human-like manner for an articulated object with a
single revolute joint. The key insight is that, for each part of
such an articulated object, the torque imposed by a human
hand should be along the direction of the revolute joint. We
consider all the contact points on the object surface that are
less than 2mm from the fingers. To simulate the forces on
the object, we first add the gravity as well as the support-
ing force of the world’s ground into our calculation similar
to Section C.1. We then suppose that a unified force is ap-
plied along the normal direction of each contact point, and
compute the torque of each force w.r.t. the revolute joint of
the articulated object. We normalize these torques with the
inertia of the object.

Let d⃗ denote the direction of the object revolute joint. For
each object part, we compute EArt = maxτ τ · d⃗, where
τ is the torque applied at a contact point. We consider a
video frame achieves articulation consistency, only if each
object part in this frame satisfies EArt > 0.3. We calculate
the proportion of such qualified video frames as one of our
evaluation metrics.

C.3. Perceptual Score

We collect human perceptual scores to judge the natural-
ness of the motion sequences.

We invite 23 people who are not familiar with motion
synthesis and have no information on our method or any of
the baselines to rate the generated animation videos from
both our approach and baselines. These people are given
10 different result videos per method per object category,
where all videos are shuffled, and the corresponding method
names are blind to the people. After that, they are required
to rate each video from 1 to 5. The scoring rules are:

• 1 point: This video is very different from human be-
haviors, with lots of physical unrealities such as pene-
tration and hand-object separation;

• 3 points: This video is human-like and physically plau-
sible to some extent, but the tester can still detect the
difference with human behavior or obvious physical
defects;

• 5 points: This video is basically consistent with human
behavior and is physically realistic.

For each method, we first compute the mean rating score
of each object category and then report the average score
among all categories in the main paper.

D. Experimental Details
Given triangular part meshes {Mi}Ni=1 of a manipulated

object, we sample 1000 points from each part mesh. We use
a batch size of 64 for training, and the training procedure
contains 500 epochs for Laptops and 1000 epochs for other
categories. To balance the effects of different loss functions,
we empirically set λflag = 0.1, λpos = 500, λdir = 100,
λtip = 100, λvec = 1, and λkld = 5 during training.

In our synthesizer, we first optimize MANO hand pose
parameter θ in 2000 epochs for fitting finger embedding.
We simply set λtip = 50, λjoint = 1, and λsmooth = 0.05
and 1000 respectively for the 45D MANO pose parameters
and 3D wrist position parameters in θ. To further optimize
contact and penetration, we then iteratively use 6 steps to
progressively improve the θ, while in each step, the opti-
mization process contains 500 epochs. We empirically set
λcontact = 80, λtrans = 1, λv = 5 and λa = 20. To pro-
gressively improve the smoothness of our synthesis results,
the parameter λsmooth is set to 1 in the first two steps, 10 in
the following two steps and 500 in the last two steps.

E. Data Processing for HOI4D
To better leverage the HOI4D [2] dataset for synthesis

purposes, we performed several augmentation and modi-
fication steps to the raw data. We first split the object
instances into training and testing sets in a proportion of
7 : 3. Due to the limitation of the data collection method,
the original HOI4D has a non-negligible problem of noise
and penetration. To eliminate the noise, we extract several
keyframes for each segment in training data and perform
smooth interpolations between the keyframes. To solve the
penetration problem, we use a contact optimization tech-
nique that is almost the same as our synthesizer module,
in which we manually specify the contact points in each
keyframe.

F. Additional Baseline
GraspTTA [1]+TOCH [5]: TOCH was developed to re-

fine the hand poses given a coarse hand-object manipula-
tion. Benefiting from the dense field representation, TOCH
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Pliers Scissors Laptop
Pen (%) ↓ Mov ↑ Art ↑ Pen (%) ↓ Mov ↑ Art ↑ Pen (%) ↓ Mov ↑ Art ↑

Ground Truth 0.000 1.000 1.000 0.046 1.000 0.970 0.316 1.000 1.000

GraspTTA 0.555 0.779 0.420 0.454 0.993 0.849 5.211 1.000 0.997
GraspTTA+TOCH 0.124 0.918 0.511 0.124 0.947 0.298 1.596 1.000 0.978

CAMS (Ours) 0.004 1.000 1.000 0.080 0.999 0.989 0.906 1.000 1.000

Kettle Overall
Pen (%) ↓ Mov ↑ Art ↑ Pen (%) ↓ Mov ↑ Art ↑

Ground Truth 0.602 1.000 N/A 0.241 1.000 0.990

GraspTTA 4.852 0.586 N/A 2.768 0.839 0.755
GraspTTA+TOCH 2.002 0.897 N/A 0.961 0.941 0.596

CAMS (Ours) 0.098 0.915 N/A 0.272 0.978 0.996

Table 1. Quantitative results compared with GraspTTA [1] and GraspTTA+TOCH [5]. “Pen” denotes the average percentage of hand
vertices penetrated in the object. “Mov” denotes the average proportion of frames that are contact-movement consistent. “Art” denotes the
average proportion of frames that are articulation consistent.

Pen (%) ↓ Mov ↑ Art ↑
Ground Truth 0.000 1.000 1.000

CAMS (w/o Obj Can) 0.147 1.000 1.000
CAMS (w/o Contact Can) 0.021 1.000 0.879

CAMS (Abs Finger) 0.009 0.998 1.000
CAMS 0.004 1.000 1.000

Table 2. Additional ablation studies on the “Pliers” category.

could precisely sense the local geometry of contact. Thus
we additionally implement a baseline that further refines the
result of GraspTTA using TOCH. To better adapt the im-
perfect generation results from ManipNet, we train TOCH
networks with ground truth manipulation trajectories added
with random noise, and test in unseen manipulation anima-
tions generated from GraspTTA.

Quantitative result: As shown in Table 1,
GraspTTA+TOCH could generate physically more re-
alistic results than simply using GraspTTA, whereas our
approach still significantly outperforms the baselines.

G. Additional Ablation Studies
Object-centric Canonicalization We ablate the root-

level canonicalization and thus generate contact reference
frames directly in the original object frame rather than the
scale-normalized one. As shown in Table 2 (2nd line), our
CAMS performs worse without object-centric canonical-
ization, and the generalizability of our framework also de-
creases.

Contact-centric Canonicalization We also design ex-
periments to demonstrate the necessity of canonicalizing
finger embedding into the contact reference frames. Ta-
ble 2 (3rd line) shows that both penetration rate and articu-

lation rate significantly decrease after removing the contact-
centric canonicalization, indicating that our contact-centric
canonicalization could help improve the synthesis quality.

Absolute Finger Embedding Instead of represent-
ing the canonicalized finger embedding as Fi =
(Jtip

i ,Ddip
i ,Dpip

i ,Dmcp
i ,Droot

i ), we use similar represen-
tations to Jtip

i for other joints, denoted as Fabs
i =

(Jtip
i ,Jdip

i ,Jpip
i ,Jmcp

i ,Jroot
i ), which are absolute positions

of the i-th finger’s joints respectively. Table 2 (4th line)
shows that using the absolute position for finger joints could
harm the whole framework.
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