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1. Model Analysis

Block Number. Our C?PNet includes 3 groups of FA
blocks, with the proposed PDU embedded in each block.
To investigate the effect of different numbers of blocks per
group, we summarize the corresponding quantitative results
on SOTS-indoor in Table 1. The results show that even with
a lightweight structure (6 blocks per group), our proposed
C?PNet can achieve competent performance. Specifically,
our method can improve the PSNR by 0.71dB and save
0.20M parameters compared to AECRNet, and improve the
PSNR by 1.49dB and save 2.05M (nearly 0.5x) parame-
ters compared to FFANet. Additionally, as the number of
blocks increases, the performance of our network further
improves. Considering the parameter-performance trade-
off, we adopt the setting of 19 blocks per group, which has a
much lower number of parameters than MAXIM-2S (nearly
0.5x) and DeHamer (nearly 0.05x), with PSNR improve-
ments of 4.45dB and 5.93dB, respectively.

Negative Sample Setting. The principle behind select-
ing the existing methods used to generate the non-easy neg-
atives is that their performance distribution, e.g., PSNR,
should be as comprehensive as possible. This consider-
ation arises from a trade-off between the compactness of
the guidance provided by the negatives and the effective-
ness of the resultant force generated by C?R, as also im-
plied by Fig.1 of the main paper. Specifically, in the case
of 7 negatives, we choose the results from DCP (16.62
PSNR), AODNet(19.06 PSNR), DehazeNet (21.14 PSNR),
GCANet (30.06 PSNR), FFANet (36.39 PSNR), AECRNet
(37.17 PSNR), and FFANet with our C?R (39.24 PSNR).
Note that we can obtain more negatives by deploying our
C2R on other methods.

Following this principle, we first examine the impact of
different numbers of negatives and report the quantitative
results on SOTS-indoor in Table 2. Similar to the findings
in non-consensual CR, we observe that using more nega-
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Table 1. Test on different numbers of blocks per group.

Method #Blocks PSNR SSIM #Params
6 3788 | 09926 | 2.41M
12| 4041 | 09945 | 4.62M
18 | 4233 | 09952 | 6.82M

2

C"PNet 19 | 4256 | 09954 | 7.17M
20 | 4269 | 09954 | 7.53M
24 | 4337 | 09957 | 9.02M

FFANet 19 | 3639 | 09886 | 4.46M

AECRNet ] 37.17 | 09901 | 2.61M
MAXIM-2S ] 38.11 | 0.9908 | 14.1M
DeHamer ; 36.63 | 0.9881 | 132.45M

tives leads to better dehazing performance. Specifically,
our C2R obtains a PSNR improvement of 1.28dB against
non-consensual CR (i.e., 42.60dB vs.41.32dB) in the case
of 10 negatives which is the optimal setting reported in non-
consensual CR. However, we find that the performance only
slightly increases when the number of negatives changes
from 7 to 10 in our method. Therefore, we set the number of
negatives in our method to 7, as it can achieve a good trade-
off between computational cost and training speed while
still providing effective guidance for dehazing.

We further explore the impact of collecting consensual
negatives using another approach, i.e., generating the non-
easy negatives by simply interpolating between the hazy im-
age (the easy negative) and the ground-truth image (the pos-
itive) based on PSNR. We use a lightweight structure, i.e.,
6 blocks per group in the model, and list the quantitative re-
sults on SOTS-indoor in Table 4. The results show that us-
ing simple interpolation to generate the negatives severely
decreased the performance. As discussed in the main paper,
we believe this is because the interpolated image lacks post-
dehazing priors. Therefore, such negatives cannot provide
purposive cues to guide the model to learn from worse pat-



Table 2. The effect of the number of negative samples.

#Neg. 1 2 4 7 10
PSNR || 41.12 | 42.08 | 4247 | 4256 | 42.60
SSIM || 0.9947 | 0.9952 | 0.9954 | 0.9954 | 0.9955

terns. By contrast, different patterns of haze residues in the
recoveries produced by existing dehazers carry the informa-
tion that tells the model what haze is hard to remove, thus
aiding in regularizing the objective of the model. Although
the over-dehazing or other related problems that may affect
the stability of consensual CR exist in those non-easy sam-
ples, they can be alleviated by our curriculum learning strat-
egy that fixes and maximizes the weight of the easy nega-
tive. In this way, the solution space would be almost unbi-
ased, as the easy sample shares the same semantics with the
positive (except for the haze) as well as embedding the orig-
inal haze distribution. We also show an example of visual
comparison in Fig. 1. Note that to generate each negative,
we keep the average PSNR of the interpolated images ba-
sically the same as that of the recoveries by the selected
dehazer.

We also demonstrate the practicability of our C2R in two
additional perceptual metrics used for distinguishing hard
and ultra-hard negatives, i.e., LPIPS (reference-based) and
NIQE (distortion-based). The results are presented in Ta-
ble 3, showing that using these two metrics can yield per-
formances comparable to that of the original PSNR metric,
and can even deliver performance gains in the real-world
scene.

Table 3. A comparison of using diverse distinguishing metrics.

Distinguishing SOTS-indoor NH-Haze2
Metric PSNR | SSIM || PSNR | SSIM
PSNR 42.56 | 0.9954 || 21.19 | 0.8334
LPIPS 42.51 | 09954 || 21.29 | 0.8337
NIQE 42.54 | 0.9954 | 21.16 | 0.8361

Parameter Sensitivity for the CL strategy. To verify
the effect of the hyperparameter ~ in our CL strategy, we
present the results in Table 5. When v = 0, the hard and
ultra-hard negatives are not treated differently, resulting in
a poor performance against the other settings. This demon-
strates the necessity of the proposed CL strategy. On the
other hand, it can be observed that the best PSNR perfor-
mance is 42.56dB when v = 0.25.

2. Additional Visual results

To qualitatively evaluate the proposed PDU, we follow
PFDN to use a SIFT descriptors based method [2] to map

Table 4. A quantitative comparison using the negatives generated
by simple interpolation.

Neg. by dehazer
PSNR 37.88 19.45
SSIM 0.9926 0.8230

by interpolation

Table 5. Performance on SOTS-indoor concerning different values
of the hyperparameter . v = 0 means to average the contributions
of different negative samples.

ol 0 0.2 0.25 0.3 0.4 0.5
PSNR || 42.18 | 4245 | 42.56 | 42.40 | 4237 | 4232
SSIM || 0.9952 | 0.9954 | 0.9954 | 0.9953 | 0.9953 | 0.9953
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GT By Dehazer(30.16dB) Result (36.06dB)
Figure 1. Visual results with negatives generated by interpolation
or existing dehazers. (Zoom in for better view.)

Hazy Input

GT Features (PDU)  Recovery (39.76dB)
Figure 2. Visualizations of the features from FDU and PDU.
(Zoom in for better view.)

the features generated by the last FDU and our PDU in the
base+C?R network into a 3D color space. The visualiza-
tions are shown in Fig. 2. It can be seen that our PDU can
produce more precise features especially in preserving the
structural information (see the painting on the wall), com-
pared to FDU. This suggests the superiority of PDU over



FDU in haze removal, mainly due to the disentangled es-
timation of the features corresponding to the atmospheric
light and the transmission map.

To further investigate the generalization ability of the
proposed C?PNet, we conduct an additional experiment on
the Fattal’s dataset [ 1], in which the images are captured in
real-world environments. The visual comparisons are pro-
vided in Fig. 3. Our method generates visually satisfying
results with fewer haze residues or color distortions com-
pared to all the other competitors, demonstrating its superi-
ority and generalization ability in real-world scenes.

We also provide visual results regarding the generality
of C?R in Fig. 4-Fig. 7, respectively. Our C2R consistently
achieves the best visual results compared to other methods.
For example, in Fig. 5, GCANet produces the result con-
taining several gray spots and artifacts in the wall. Although
the other competitors can remove some of them, they in-
troduce color distortion problems. In contrast, our method
generates the restoration that is closest to the ground truth.
These results powerfully demonstrate the generality of our
C?R, which can boost the performance of various image de-
hazing approaches.
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Haze AODNet GDN FFANet AECRNet MAXIM DeHamer Ours
Figure 3. Visual comparisons on the Fattal’s dataset. (Zoom in for better view.)
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Figure 4. Visual comparisons for different contrastive regularizations on FFA-Net. (Zoom in for better view.)
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Figure 5. Visual comparisons for different contrastive regularizations on GCANet. (Zoom in for better view.)
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Figure 6. Visual comparisons for different contrastive regularizations on GDN. (Zoom in for better view.)
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Figure 7. Visual comparisons for different contrastive regularizations on MSBDN. (Zoom in for better view.)
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