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The supplementary material is organized into the follow-
ing sections:

• Section A: Details of Complexity Comparison.

• Section B: Effectiveness of FeatER by Feature Maps
Visualization.

• Section C: Effectiveness of Using the Feature Map Re-
construction Module.

• Section D: 2D-3D Lifting Module.

• Section E: Loss Function.

• Section F: More Qualitative Results.

• Section G: Broader Impact and Limitations.

A. Details of Complexity Comparison

In Table 1, we list the layer-by-layer comparison be-
tween one vanilla transformer block and one FeatER block.
The shape of a stack of feature maps is [n, h,w], where n
is the number of feature maps, h and w is the height and
width of the feature maps, respectively. If h = w = 64, the
embedding dimension of d would be d = hw = 4096 with-
out discarding any information. Since d is much larger than
n, the computational complexity of one vanilla transformer
block and one FeatER block can be written as O(d2) and
O(d3/2), respectively.

To be more specific, let there be a stack of 32 feature
maps with the dimension of [32, 64, 64]. One vanilla trans-
former block requires 4.3G MACs when the embedding di-
mension is d = 64 × 64 = 4096 (i.e., flattening the spatial
dimension). Even if we further reduce the embedding di-
mension to d = 1024, it still needs 0.27G MACs. However,
given feature maps [32, 64, 64], FeatER only requires 0.09G
MACs, which significantly reduces the computational cost.

B. Effectiveness of FeatER by Feature Maps
Visualization

We visualize the coarse feature maps (extracted by CNN
backbone) and the refined feature maps (refined by FeatER)
in Fig. 1. These examples demonstrate that our proposed
feature map-based transformer (FeatER) blocks can suc-
cessfully refine the coarse feature maps by predicting more
accurate joint locations, thereby improving the performance
of human reconstruction tasks (2D HPE, 3D HPE, and
HMR).

C. Effectiveness of Using the Feature Map Re-
construction Module

We compare the performance of our network with and
without the feature map reconstruction module in Table 2.
The performance is improved in all cases, including for the
most challenging actions on the Human3.6M indoor dataset
with heavy occlusions such as Photo, SitD (sitting down),
and WalkD (walking with dog). The feature map recon-
struction module effectively reduces the error by 4.4, 3.7,
and 4.6 for these actions, respectively. Then, we compare
the results on the in-the-wild 3DPW dataset, the MPJPE and
MPVE also have decreased. Therefore, through this analy-
sis, we validate the effectiveness of using the feature map
reconstruction module.

Next, we investigate the best masking ratio in the feature
map reconstruction module. We plot the relations between
the error (MPJPE, PA-MPJPE, and MPVE) with the mask-
ing ratio in Fig. 2. We set the masking ratio to be 0.3 since
it provides the best results on both Human3.6M and 3DPW
datasets.

D. 2D-3D Lifting Module

The 2D-3D Lifting module is aimed to lift the 2D feature
maps [n, h,w] to 3D feature maps [n, h,w, d]. The interme-
diate 3D Pose can be obtained by a 3D pose head. The MLP
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Table 1. The detailed complexity comparison between one vanilla transformer block and one FeatER block. We calculate their MACs
based on the input and output with the corresponding operation.

Vanilla Transformer block FeatER block

Attention Layer: Attention Layer(AttentionW):

description input output operation MACs description input output operation MACs

x to QKV xin [n, d] QKV [n, 3d] nn.Linear(d, 3d) 3nd2 x to QKV xw
in: [n, h, w] QKV [n, h, 3w] nn.Linear(w, 3w) 3nhw2

a1 = QKT Q[n, d], KT [d, n] a1[n, n] torch.matmul n2d aw
1 = QwKwT Qw[h, n, w],KwT [h,w, n] aw

1 [h, n, n] torch.matmul n2hw

xattn = a1V a1[n, n], V [n, d] xattn[n, d] torch.matmul n2d xw
attn = aw

1 V w aw
1 [h, n, n], V [h, n, w] xw

attn[h, n, w] torch.matmul n2hw

Attention Layer(AttentionH):
description input output operation MACs

x to QKV xh
in: [n,w, h] QKV [n,w, 3h] nn.Linear(h, 3h) 3nh2w

ah
1 = QhKhT

Qh[w, n, h],KhT
[w, h, n] ah

1 [w, n, n] torch.matmul n2hw

xh
attn = ah

1V
h ah

1 [w, n, n],V h [w, n, h] xw
attn[w, n, h] torch.matmul n2hw

Projection Layer Projection Layer

description input output operation MACs description input output operation MACs

projection: xattn[n, d] x[n, d] nn.Linear(d, d) nd2 projection: xFM
attn[n, h, w] x[n, h, w] nn.Conv2d(n, n,1) n2hw

MLP Layer (mlp raito=2) in FFN: CONV Layer (conv raito=2) in FFN:

description input output operation MACs description input output operation MACs

MLP x[n, d] xhidden[n, 2d] nn.Linear(d,2d) 2nd2 CONV x[n, h, w] xhidden[2n, h, w] nn.Conv2d(n, 2n,1) 2n2hw

MLP xhidden[n, 2d] x[n, d] nn.Linear(2d,d) 2nd2 CONV xhidden[2n, h, w] x[n, h, w] nn.Conv2d(2n, n,1) 2n2hw

Total: 8nd2 + 2n2d Total: 3nhw(h + w) + 9n2(wh)

Total: 6nd3/2 + 9n2d when w ∗ h = d and w = h

knee(r) ankle(r) shoulder(r) wrist(r) knee(l)
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Figure 1. Visualization of coarse feature maps (extracted by CNN backbone) and refined feature maps (refined by FeatER).

head outputs the parameters for the mesh regressor. The ar-
chitecture of the 2D-3D Lifting Module is shown in Fig. 3.

E. Loss Function

2D HPE
We first train our FeatER on COCO dataset for the

2D HPE task. Following [3, 7], we apply the Mean



Table 2. Ablation study on the effectiveness of using our feature map reconstruction module on Human3.6M. ‘FM-Rec’ means Feature
Map Reconstruction Module and ‘∆’ denotes the performance improvement.

Human3.6M 3DPW
MPJPE ↓ MPJPE ↓ MPVE ↓

actions Dire. Eat Phone Photo Pose Purch. SitD. WalkD. Smoke Avg. Avg. Avg.
w/o FM-Rec 50.1 49.5 56.8 60.0 46.3 51.0 69.4 57.8 52.4 53.3 89.9 106.9
with FM-Rec 46.3 45.7 54.7 55.6 43.0 47.2 65.7 53.2 49.6 49.9 88.4 105.6

∆ 3.8 3.8 2.1 4.4 3.3 3.8 3.7 4.6 2.8 3.4 1.5 1.3

Figure 2. Evaluation of different masking ratios in the feature map
reconstruction module.
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Figure 3. The architecture of the 2D-3D Lifting Module

Squared Loss (MSE) between the predicted heatmaps
(HM ) HM ∈ RK×h×w and the ground truth 2D pose
HMGT ∈ RK×h×w, where K is the number of joints, h
and w are the height and width of heatmaps, respectively.
When the input image is 256×192 and the number of joints
is K = 17, the heatmap size would be w = 64, and h = 48,
respectively. The MSE for the 2D pose is defined as fol-
lows:

L2D−Pose = ∥HM −HMGT ∥2 (1)

3D HPE and HMR
We apply an L1 loss between the predicted 3D pose

J ∈ RK×3 and the ground truth 3D pose JGT ∈ RK×3

following [1, 2, 4]. K is the number of joints.

L3D−Pose =
1

K

K∑
i=1

∥Ji − JGT
i ∥1 (2)

Following [2], we use the SMPL [6] model to output
human mesh, which is obtained by fitting the 3D pose J ,
the shape parameter β, and the rotation parameter θ into the
SMPL model. We supervise the shape and rotation parame-
ters by applying the L2 loss following [6]. The reconstruc-
tion loss Lrec is the Mean Square Error (MSE) between the

target feature maps and reconstructed feature maps. The
overall loss is defined as follows:

Loverall = L3D−Pose + w1∥β − βGT ∥
+ w2∥θ − θGT ∥+ w3Lrec

(3)

where w1 = 0.01, w2 = 0.01 and w3 = 0.005 are the
weights for the loss terms.

F. More Qualitative Results
2D Heatmap and Human Mesh Reconstruction

(HMR) Visualization
Fig. 4 provides visualization of 17 heatmaps (COCO [5]

17 joints format) and the predicted 2D poses of the input im-
ages. The visualization of Human3.6M and 3DPW dataset
are shown in Figs. 6. Figs. 5 and 7 show the HMR visu-
alization of FeatER on several in-the-wild images from the
COCO [5] dataset. FeatER can estimate accurate human
meshes of the given images with regular human articulation
in Fig. 5. For some very challenging cases, as shown in Fig.
7, FeatER can still output reliable human meshes.

When comparing with the state-of-the-art HMR method
METRO [4], FeatER clearly outperforms METRO with
only 5% of Params and 16% of MACs on these in-the-wild
images (taken from the COCO [5] dataset) as depicted in
Fig. 8, demonstrating the superiority (in terms of both ac-
curacy and efficiency) of the proposed FeatER method for
practical applications.

Inaccurate and Failure Cases
Although FeatER can estimate human mesh quite well

as demonstrated in Figs. 5 and 7, there are still some inac-
curate and failure cases. As presented in Fig. 9 left, the red
circle indicates the inaccurate mesh part due to heavy oc-
clusion. The proposed Feature Map Reconstruction Mod-
ule is not enough to tackle this issue with limited training
data. For more complex human body articulation in Fig. 9
right, FeatER fails to estimate accurate human mesh. How
to further improve the generalization of FeatER to in-the-
wild images would be our future work.

G. Broader Impact and Limitations
We believe that FeatER will help to highlight model ef-

ficiency for the HMR task. With significantly reduced com-
putational and memory complexity than SOTA approaches,
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Figure 4. 2D heatmaps visualization of the proposed FeatER. Images are taken from the COCO validation set [5].
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Figure 5. Mesh reconstruction qualitative results of the proposed FeatER. Images are taken from the in-the-wild COCO [5] dataset.



Image (H36M) Output Mesh Image (3DPW) Output Mesh

Figure 6. Mesh reconstruction qualitative results of the pro-
posed FeatER. Images are taken from the Human3.6M dataset and
3DPW dataset.
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Figure 7. Mesh reconstruction qualitative results of the proposed
FeatER for more challenging cases. Images are taken from the in-
the-wild COCO [5] dataset.

FeatER can still outperform them, which is better appreci-
ated by real-world applications like VR/AR, virtual try-on,
and AI coaching.

A potential limitation of FeatER is that it can not perform
well in some specific scenarios such as crowded scenes. We
leave this issue for future study.

Image FeatER METRO Image FeatER METRO

Figure 8. Qualitative comparison with the state-of-the-art HMR
method METRO [4]. Images are taken from the in-the-wild COCO
[5] dataset. The red circles highlight locations where FeatER is
more accurate than METRO.

Image Mesh (not accurate) Image Mesh (Failure)

Figure 9. Left: Inaccurately estimated mesh due to heavy occlu-
sion. Right: Failure estimated mesh due to complex human body
articulation.
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