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A. Overview
In this document, we present more details and several

extra results as well as visualization. In Appendix B, we
introduce details of the datasets used in our work. Then we
elaborate on the implementation details of our NeuralPCI
and other baselines in Appendix C. And in Appendix D, we
provide extra results in multiple aspects, such as the con-
vergence, different numbers of input frames, explicit versus
implicit frame interpolation, varying point cloud densities
and ground point removal. Finally, we show more qualita-
tive results in Appendix E.

B. Dataset Details
In this section, we introduce DHB dataset and the

open-source autonomous driving datasets based Non-Linear
Drive (NL-Drive) dataset. The train/val/test split of datasets
facilitates the comparison of benchmarks. NeuralPCI opti-
mizes at run-time, so it doesn’t need the training data. We
perform NeuralPCI as well as NSFP [4] on the test set di-
rectly to obtain the evaluation results. Other learning-based
methods are pre-trained on the training set first and then
compared on the same test set.

B.1. DHB Dataset

DHB dataset [7] consists of 14 point cloud sequences in-
dicating dynamic human bodies, in which each point cloud
frame is sampled to 1024 points. To align with baseline
method [7], we adopt six sequence with 1,600 frames, (i.e.,
Longdress, Loot, Redandblack, Soldier, Squat 2, Swing) as
the test dataset, and the remaining eight sequences with
1,600 frames as the train dataset.

B.2. NL-Drive Dataset

We construct NL-Drive dataset based on three pub-
lic autonomous driving datasets, namely KITTI odometry
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Figure S1. Visualization (zoom-in view) for the point clouds of
four consecutive input frames with equal time interval in the
NL-Drive dataset. The 1st to 4th frames sorted by chronological
order are colored in blue, white, red and yellow, respectively. The
motion of surrounding objects is nonlinear.

dataset [3], Argoverse 2 sensor dataset [2], and Nuscenes
dataset [1]. KITTI odometry dataset contains 22 LiDAR
point cloud sequences in total, 11 sequences with ground
truth (00∼10), and we use 00∼06 for training, 07∼08 for
validation, and the others for test. Argoverse 2 sensor
dataset is composed of 1,000 scenarios with 150 LiDAR
sweeps per scenario on average, while Nuscenes dataset
consists of 1,000 driving scenes with about 400 LiDAR
frames for each scene. For both datasets, we utilize the top
700 scenes to train, 701∼850 scenes to validate and the re-
maining 150 scenes to test. Thus, we define the data source
of the NL-Drive dataset as the mentioned splited datasets
based on the training, validation and test ratio of 14:3:3. For
Nuscenes dataset, we first downsample point clouds from
20Hz to 10Hz in order to acquire larger motion between in-
put frames and align with the other two datasets. We select
the point clouds at a given interval of frames from the 10Hz
point cloud as input, and the remaining point clouds as the
ground truth of interpolation. Particularly, the frequency of
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Figure S2. Network architecture of our proposed NeuralPCI.

input point clouds is 2.5Hz when there are three interpola-
tion frames to predict between the middle two input frames.

Our NL-Drive dataset is intended to focus on large move-
ments in as many autonomous driving scenarios as possible.
Thus, we try to sort out hard samples that possess the largest
relative pose transformation between frames while ensuring
it is above the selection threshold from all scenes of the data
source. These samples tend to contain nonlinear motions
under the precondition of ego-vehicle large motions. The
details for constructing NL-Drive dataset are as follows.
We take the standard case in the main paper as an exam-
ple, i.e., a sample contains 4 frames as multi-frame input
and 3 frames between the middle two input frames to inter-
polate. First, we calculate the 6-DOF relative pose transfor-
mation between each two input frames. Then, we transform
the relative ego-vehicle pose to the LiDAR sensor coordi-
nate system, in which the rotation is uniformly expressed as
the Euler angle and the translation as the translation vector,
indicating the rotational angular velocity and translational
velocity of the ego-vehicle between two frames to some ex-
tent. In this form, we can intuitively infer and compare the
magnitude of movements from the value. Next, consider-
ing that the pitch and roll rotation in autonomous driving
datasets is much slighter than the yaw rotation, we define
the metric for the rotational motion as the yaw angle. The
metric for translational motion is defined as the root-mean-
square of the translation vector. We select out the top-k
samples with the largest rotational or translational values
from each scene and filter them with the threshold (5.0◦

for yaw, 2.5m for translation) that is utilized to balance
the greater coverage of scenes and the need for large move-
ments. Finally, we exhibit the local zoom-in view of typical
samples from NL-Drive dataset in Fig. S1, from which the
nonlinear motion of objects can be evidently observed.

C. Method Details

In this section, we elaborate on the network architecture
of NeuralPCI and more details of other baselines.

Table S1. Results with different layer widths for NeuralPCI.

layer
width

DHB (×10−3) NL-Drive
CD↓ EMD↓ CD↓ EMD↓

128 0.563 3.931 0.828 105.230
256 0.547 3.766 0.768 102.173
512 0.541 3.677 0.801 97.029

1024 0.542 3.651 0.770 97.099

Table S2. Results with different layer depths for NeuralPCI.

layer
depth

DHB (×10−3) NL-Drive
CD↓ EMD↓ CD↓ EMD↓

4 0.543 3.755 0.810 107.301
6 0.536 3.693 0.759 102.150
8 0.541 3.677 0.801 97.029

10 0.546 3.737 0.750 97.213

C.1. Network Architecture of NeuralPCI

As shown in the Fig. S2, NeuralPCI consists of an 8-
layer 512-unit MLP, using the LeakyReLU activation func-
tion for each layer except the last one. Taking one point of
the input point cloud as an example, its 3-dimensional spa-
tial coordinate and 1-dimensional temporal coordinate are
concatenated and positional encoded (PE) to obtain a 4k -
dimensional input fed into the MLP. The positional encod-
ing function Γ(·) : Rn → Rnk is shown below:

Γ(x) = (x, sin(x), cos(x), . . . , sin(2mx), cos(2mx)) (1)

where we set m to 0 for convenience, thus k is equal to 3.
Besides, 1-dimensional interpolation time is concate-

nated with the 512-dimensional features of the penultimate
layer by a skip connection, which is used to regulate the
final 3-dimensional motion output. This output is added
element-wise to the spatial coordinate of the input point
cloud to obtain the final interpolation point. All points in the
point cloud are computed in parallel by MLP with shared
weights, accumulating the gradients and back-propagating
to update the parameters of NeuralPCI.



To further investigate the influence of other network
structure hyperparameters on the experimental results, we
explore the MLP with different layer widths and depths.
The results are presented in Tables S1 and S2, which in-
dicates that the hyperparameters of network structure have
a relatively minor impact on the interpolation results. Tak-
ing both accuracy and efficiency into account, we choose
the structure with the parametric number of 1.847M as de-
picted in Fig. S2.

C.2. Optimization Details

The computational cost of EMD increases with the num-
ber of point clouds, and down-sampling with EMD loss
leads to worse results. Therefore, we only use it on DHB
dataset (1024 points). In contrast, we utilize smoothness
loss on NL-Drive dataset, which adopts k-nearest neighbor
(k = 9) to further regulate local rigid motion for autonomous
driving scenarios. Empirically, we set the weights α, β, γ in
the total loss to 1, 50, 0 for DHB Dataset and 1, 0, 1 for
NL-Drive Dataset during optimization.

C.3. Other Baselines

We adopt the linear interpolation results of outstanding
scene flow methods NSFP [4] and PV-RAFT [6] as base-
lines, with the consideration of explicit interpolation meth-
ods. We calculate both forward scene flow f0→1 and back-
ward scene flow f1→0 from the pair-frame inputs, and in-
terpolate linearly to acquire the scene flow between the ref-
erence frames and the interpolation frame, which is used to
warp the input frame. Then, as described in Eqs. (2) and (3),
we can obtain the intermediate frame based on the forward
or backward scene flow.

P̂fwd = P0 + t× f0→1 (2)

P̂bwd = P1 + (1− t)× f1→0 (3)

where t ∈ (0, 1) means the time step of the intermediate
frame, and P0 and P1 indicate the reference frames before
and after the in-between frame.

D. Supplementary Experiments
In this section, we conduct further supplementary experi-

ments to verify the effectiveness of our method, covering as-
pects of the convergence, different numbers of input frames,
explicit versus implicit frame interpolation, varying point
cloud densities and ground point removal.

D.1. Convergence and Efficiency

Since NeuralPCI is optimized at runtime, there is a trade-
off between its accuracy and time consumption. We plot the
convergence curve of NeuralPCI on DHB dataset in Fig. S3,

Figure S3. Convergence curve of NeuralPCI. As references,
the performance of PointINet [5] and IDEA-Net [7] is denoted by
dashed lines. Compared to them, NeuralPCI only needs less than
100 iterations to achieve better CD and EMD results.

in which each data point represents the average result of
the overall dataset after corresponding iterations. It is ev-
ident that NeuralPCI has an excellent convergence, as the
error decreases significantly in the first 100 iterations and
exceeds previous SOTA methods. When the number of it-
erations grows, the error gradually reduces, and the conver-
gence is almost complete after 500 iterations. And the entire
optimization of 1000 iterations is finished in less than one
minute. Therefore, the number of iterations can be deter-
mined according to the specific usage scenario. In the case
of high timeliness requirements, satisfactory results can be
obtained within only 5 seconds, while in other off-board
applications, the number of iterations can be appropriately
raised to further improve the accuracy.

D.2. Pair-frame or Multi-frame

In order to eliminate the unfairness of comparing with
the existing pair-frame point cloud interpolation methods, a
more comprehensive experiment is conducted. Firstly, us-
ing PointINet [5] as an example, we input every two frames
of all four input point cloud frames to obtain intermediate
frame prediction and fuse the interpolation results by ran-
dom sampling fusion or nearest neighbor (NN) fusion. Ran-
dom sampling selects points with equal probability from
each predicted point cloud result. And NN fusion means
to find the nearest point from another point cloud and av-
erage the spatial coordinates. Based on this, the pair-frame
point cloud interpolation method can also fully utilize the
information of all four input point clouds. From the results
in Table S3, it can be seen that since the final predicted



Table S3. Quantitative results for PointINet [5] with different
pair-frame inputs and multi-frame fusion methods. We denote
the input frames as frames 1∼4. Different pair frames are used
separately as input to predict the same interpolation frame, and the
predicted results A∼D are finally fused.

Type
Input

Frames
DHB (×10−3) NL-Drive
CD↓ EMD↓ CD↓ EMD↓

pair-
frame

A frame 2, 3 0.97 12.23 1.06 101.12
B frame 1, 3 1.33 12.81 1.87 125.90
C frame 2, 4 1.33 12.93 1.72 129.30
D frame 1, 4 3.49 21.20 4.72 227.91

multi-
frame

random
fusion

B+C 1.33 15.64 1.52 112.07
A+B+C 1.19 15.85 1.25 105.19

A+B+C+D 1.46 17.47 1.62 118.44

NN
fusion

B+C 1.25 12.95 1.66 127.68
A+B+C 1.05 12.34 1.17 105.00

A+B+C+D 1.17 12.54 1.29 108.91

point cloud is located between the second and third input
frames, the interpolation results using these two frames as
input have the highest accuracy, while those using the first
and third frames and using the second and fourth frames
have the suboptimal accuracy, and those using the first and
fourth frames have the worst accuracy. Secondly, we fuse
the aforementioned two or more prediction results by ran-
dom sampling fusion or nearest neighbor fusion. However,
it can be noted that simple point cloud fusion is difficult to
achieve higher accuracy.

Finally, we evaluate the results of all methods using both
two-frame input and multi-frame input on DHB dataset as
well as NL-Drive dataset. As shown in Table S4, simply
migrating the existing pair-frame interpolation method to
multi-frame input does not give better results, while our
method can still achieve decent interpolation accuracy even
when only using the middle two frames as input. Most
importantly, NeuralPCI provides a better way to integrate
the spatio-temporal information of multi-frame input point
clouds, achieving 10.0% CD reduction and 12.4% EMD re-
duction on DHB dataset and 4.8% CD reduction and 2.0%
EMD reduction on NL-Drive dataset compared to pair-
frame input, respectively.

D.3. More Input Frames

Beyond the standard four-frame input, our proposed
NeuralPCI can also be flexibly extended to more point cloud
input frames. Thus, as shown in Table S5, we present the
results of NeuralPCI on two datasets with more frames of
point clouds as input. Nevertheless, since the predicted
interpolation point cloud is always between the two point
clouds directly in the middle, the multi-frame inputs that
are too far away from it are dramatically less relevant in
terms of motion and do not contribute better information to

Table S4. Quantitative results for pair-frame or multi-frame
point clouds as input. The 4-frame results are based on the NN-
fusion of A+B+C inputs described in Table S3.

Input Methods
DHB (×10−3) NL-Drive
CD↓ EMD↓ CD↓ EMD↓

2-frame

NSFP [4] 1.22 7.81 1.75 132.13
PV-RAFT [6] 0.92 6.14 1.64 140.42
PointINet [5] 0.96 12.25 1.06 101.12
IDEA-Net [7] 1.02 12.03 - -

Neural PCI 0.60 4.20 0.84 98.99

4-frame

NSFP [4] 1.58 8.25 2.30 149.03
PV-RAFT [6] 1.10 6.63 1.64 144.56
PointINet [5] 1.05 12.34 1.17 105.00
IDEA-Net [7] 1.07 12.17 - -

Neural PCI 0.54 3.68 0.80 97.03

Table S5. Quantitative results with different numbers of input
frames for NeuralPCI. Among them, 2 frames input indicates the
pair frame setting and 4 frames input is the standard setting in our
main paper.

Input Frames
DHB (×10−3) NL-Drive

CD↓ EMD↓ CD↓ EMD↓
2 frames 0.60 4.20 0.84 98.99
4 frames 0.54 3.68 0.80 97.03
6 frames 0.55 3.74 0.86 98.82
8 frames 0.57 3.87 0.96 104.44

Table S6. Quantitative results for explicit and implicit inter-
polation. Ex indicates explicit interpolation, and Im indicates im-
plicit interpolation.

Methods Type
DHB (×10−3) NL-Drive
CD↓ EMD↓ CD↓ EMD↓

PointINet [5] linear 0.96 12.25 1.06 101.12

Ours (Ex)
linear 0.57 3.99 0.80 112.90

quadratic 0.56 3.81 0.84 112.83
cubic 0.60 3.90 0.89 113.24

Ours (Im) neural field 0.54 3.68 0.80 97.03

assist interpolation. Besides, the limited modeling capabil-
ity of MLP causes performance degradation. As a result,
the four-frame input is the most appropriate.

D.4. Explicit or Implicit Interpolation

NeuralPCI establishes the motion relationship through
an implicit 4D spatio-temporal neural field and derives the
corresponding output by varying the interpolation time in-
put. On the contrary, we can also use an explicit approach
to model the equations of nonlinear motion and generate the
interpolation point clouds at intermediate moments. That is,
one of the input point clouds is fed into NeuralPCI as the
reference to predict the other three input point clouds, and



Table S7. Quantitative results after removal of ground points on NL-Drive dataset.

Methods
Frame - 1 Frame - 2 Frame - 3 Average

CD EMD CD EMD CD EMD CD↓ EMD↓
PV-RAFT [6] 1.90 150.55 2.87 217.33 2.27 253.80 2.34 207.23

NSFP [4] 1.24 137.03 2.26 198.57 3.37 256.44 2.29 197.35
PointINet [5] 1.28 138.29 1.72 154.32 1.35 133.32 1.45 141.98

NeuralPCI 0.92 127.31 1.16 167.34 0.91 125.99 1.00 140.21

thus the order of the corresponding points in all the obtained
point clouds is aligned with the reference frame. Finally,
according to the spatial position of each point at four mo-
ments, we employ linear (Eq. (7)), quadratic (Eq. (8)) and
cubic (Eq. (9)) equations to describe its motion and calcu-
late the position at the intermediate moment. The equations
are as follows:

v0 = P1 − P̂0, v1 = P̂2 − P1, v2 = P̂3 − P̂2 (4)

a0 = v1 − v0, a1 = v2 − v1 (5)

b = a1 − a0 (6)

P̂t = P1 +
(v0 + v1)

2
t (7)

P̂t = P1 +
(v0 + v1)

2
t+

a0

2
t2 (8)

P̂t = P1 +
(v0 + v1 + v2)

3
t+

(a0 + a1)

4
t2 +

b

6
t3 (9)

where P̂0, P̂2, P̂3 are the predicted point clouds of Neu-
ralPCI based on the reference point cloud P1, and the points
in these four frames located at different time steps posses
one-to-one correspondences. Let t ∈ (0, 1), we calculate
the interpolation point cloud P̂t between P1 and P̂2.

As shown in the Table S6, explicit modeling of motion
can also yield nice interpolation results, but one single equa-
tion can not cover well all the complex motions of the real
world, whereas the implicit output of NeuralPCI benefits
from the higher order fitting properties of MLP and enables
more accurate nonlinear motion estimation for each sample.

D.5. Point Cloud Density

In the comparison experiments of the main paper, each
sample of DHB dataset has 1024 points, and the input point
cloud of the NL-Drive dataset is sampled uniformly to 8192
points. To further validate the performance of each method
under point clouds with different densities, we design a
series of experiments with input point clouds of the point
number gradients, i.e., 1024, 2048, 4096, 8192, and 16384
points, on NL-Drive dataset for a fair comparison. The re-
sults are shown in Fig. S4, and our proposed NeuralPCI is
robust for both sparse and dense point clouds and achieves
the state-of-the-art performance.

Figure S4. Different densities of input point cloud on NL-Drive
dataset. NeuralPCI works and achieves the optimum results with
point clouds of diverse densities.

D.6. Removal of Ground Points

Ground points cover a large portion of the point clouds in
outdoor autonomous driving scenarios, which remain rela-
tively stationary with respect to the ego vehicle and con-
tain little particular movement information. While it makes
sense to recover ground points in the point cloud interpo-
lation, the presence of these static points also affects the
demonstration of the advantages of our method for nonlin-
ear motion estimation. Therefore, we remove the ground
points from the NL-Drive dataset and conduct the same
comparison experiments as shown in the Table S7. The final
conclusion remains consistent with the main paper, which
shows our method also outperforms previous SOTA meth-
ods on dynamic objects after eliminating the influence of
static ground points.

E. Qualitative Results
We provide more qualitative results of our method

and baseline methods on DHB and NL-Drive datasets as
Figs. S5 and S6. It can be seen that the intermediate point



cloud frame predicted by NeuralPCI is closest to the ground
truth among all the methods on both datasets. On DHB
dataset, both the PointINet [5] and IDEA-Net [7] show di-
verse degrees of outliers (e.g. blurry legs and bent guns),
especially at the edge of the object, where the motion tends
to be larger than the center. On NL-Drive dataset, it is hard
for PointINet to predict shape-discernible points, e.g. cars
in the surroundings, while our method produces fewer dis-
tortions and artifacts.
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(a)

(b)

Figure S5. Qualitative comparison on the test sequence (a) Swing and (b) Soldier of DHB dataset.



(a)

(b)

Figure S6. Qualitative comparison on NL-Drive dataset.


