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A. Calculation of IV and IIVR
In this paper, we introduce the Intra-class Variance (IV)

to measure the intra-class compactness of the entity’s and
predicate’s representations:
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where ϕi,j is a feature vector in class i, µi is the mean of
feature vectors in class i, n is the number of data points per
class, and M is the number of classes. Furthermore, we in-
troduce the Intra-class to Inter-class Variance Ratio (IIVR)
to measure the inter-class distinctiveness of the representa-
tions:
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where µ is the mean across all feature vectors.

B. Additional Ablation Studies
In this part, we construct additional ablation studies from

another perspective to explore the effect of cosine similarity
(CS) and Euclidean distance (ED) metrology in Prototype-
guided Learning (PL) and Prototype Regularization (PR),
respectively. The results are summarized in Tab. 2. Exp 1,
PE-Net is the baseline model, which is trained without PL
and PR, and only uses a linear classifier to classify the re-
lation representation. Exp 2, PE-Net is trained with only
cosine similarity metrology in PL and PR, i.e., training with
Le sim and Lr sim. Exp 3, PE-Net is trained with both
cosine similarity and Euclidean distance metrology in PL
and PR. When trained with only cosine similarity metrology
in Exp 2, the model significantly outperforms the baseline
(i.e., Exp 1), e.g., 70.2% vs. 68.2% at R@100, and 26.2%
vs. 20.0% on PredCls tasks. This verifies that explicitly
establishing entity-predicate matching empowers the SGG
model with more powerful relation recognition ability than
learning decision boundaries with trainable classifiers. In
Exp 3, we further integrate the Euclidean distance metrol-
ogy into PL and PR, and our model obtains significant gains

γ1 γ2
PredCls

R@50 R@100 mR@50 mR@100 M@50 M@100
1.0 1.0 68.1 70.1 24.7 26.9 46.4 48.5
1.0 3.0 67.6 69.6 27.1 29.3 47.4 49.5
1.0 5.0 66.6 68.6 29.3 31.6 48.0 50.1
1.0 7.0 64.9 67.2 31.5 33.8 48.2 50.5
1.0 9.0 63.3 65.6 32.1 34.3 47.7 50.0
1.0 7.0 64.9 67.2 31.5 33.8 48.2 50.5
3.0 7.0 67.3 69.3 27.5 29.7 47.4 49.5
5.0 7.0 67.6 69.5 26.0 28.2 46.8 48.9
7.0 7.0 67.7 69.6 24.7 27.0 46.2 48.3
9.0 7.0 67.8 69.8 24.2 26.5 46.0 48.2

Table 1. Hyper-parameters analysis of the distance margin γ1 and
γ2.

on mR@K, e.g., 33.8% vs. 26.2% at mR@100 on PredCls.
It illustrates that using only angle-based cosine similarity
metrology in PL and PR is not sufficient to learn accurate
entity-predicate matching, mainly because some predicates
are not distinctive enough against others. Therefore, it is
necessary to use the Euclidean distance metrology as a sup-
plement for further distinction. Also, we try to use only
Euclidean metrology in PL and PR, but find that it does not
work at all.

For an intuitive illustration of the performance improve-
ment brought by the Euclidean distance metrology, we pro-
vide Recall@100 on each predicate of the models trained in
Exp 2 and Exp 3, as shown in Fig. 1. Obviously, with the in-
tegration of Euclidean distance metrology, the performance
of fine-grained predicates has been significantly improved,
e.g., “parked on”, “walking on”, “looking at”, and “stand-
ing on”. This shows that Euclidean distance metrology ef-
fectively help the model distinguish fine-grained predicates
from coarse-grained ones.

C. Hyper-parameters analysis of γ1 and γ2

To investigate the impact of distance margin hyper-
parameters γ1 and γ2 in PL and PR, we construct experi-
ments for them, and the results are summarized in Tab. 1. In
Tab. 1, when γ1 is fixed, we observe that with the increase
of γ2, the performance of mR@K gradually improves. It
indicates that enlarging the distinctions between predicate
prototypes makes fine-grained predicates distinctive from
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Figure 1. Recall@100 of all predicate classes of PE-Net(CS) and PE-Net(CS&ED) on the PredCls task. Predicates are sorted in decreasing
order of sample frequency.

Exp Metrology PredCls SGCls SGDet
CS ED R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100

1 ✗ ✗ 66.5 / 68.2 18.5 / 20.0 42.5 / 44.1 39.5 / 40.4 9.9 / 10.5 24.7 / 25.5 32.3 / 36.8 7.8 / 9.3 20.1 / 23.1
2 ✓ ✗ 68.3 / 70.2 24.0 / 26.2 46.2 / 48.2 41.5 / 42.4 13.6 / 14.7 27.6 / 28.6 32.5 / 37.1 9.3 / 11.1 20.9 / 24.1
3 ✓ ✓ 64.9 / 67.2 31.5 / 33.8 48.2 / 50.5 39.4 / 40.7 17.8 / 18.9 28.6 / 29.8 30.7 / 35.2 12.4 / 14.5 21.6 / 24.9

Table 2. Additional ablation study of the effectiveness of each metrology in PE-Net. CS and ED denote the cosine similarity and Euclidean
distance metrology.

k1 k2
PredCls

R@50 R@100 mR@50 mR@100 M@50 M@100
1 1 67.6 69.6 25.5 27.6 46.6 48.6
5 1 66.6 68.6 29.1 31.4 47.9 50.0

10 1 64.9 67.2 31.5 33.8 48.2 50.5
10 1 64.9 67.2 31.5 33.8 48.2 50.5
10 5 66.5 68.6 29.0 31.1 47.8 49.9
10 10 67.2 69.2 27.8 30.0 47.5 49.6

Table 3. Hyper-parameters analysis of k1 and k2.

the coarse-grained predicates, alleviating the semantic over-
lap and improving the accuracy of entity-predicate match-
ing. The model achieves the best overall performance when
γ2 = 7.0. Furthermore, when γ2 is fixed, with the increase
of γ1, we observe that the mR@K of PE-Net is decreasing
while the R@K is increasing. Finally, when γ1 = 1.0 and
γ2 = 7.0, the model achieves the best comprehensive per-
formance on M@K.

D. Hyper-parameters analysis of k1 and k2

In this section, we investigate the impact of hyper-
parameters k1 and k2 in PL and PR, and the results are
shown in Tab. 3. In Tab. 3, when k2 = 1 is fixed, we
observe that with the increase of k1, the performance of
mR@K gradually improves, and the performance of R@K
decreases. Furthermore, when k1 = 10 is fixed, with the in-
crease of k2, we observe that the mR@K is decreasing while
the R@K is increasing. With k1 = 10, k2 = 1 the model
achieves the best performance on mR@100 and M@100.

Method Predcls
R@50 R@100 mR@50 mR@100 M@50 M@100

Random 67.8 70.0 23.9 26.1 45.9 48.1
CLIP [3] 57.7 60.0 32.5 34.4 45.1 47.2
BERT [1] 47.7 50.1 28.0 30.1 37.9 40.1
GloVe [2] 64.9 67.2 31.5 33.8 48.2 50.5

Table 4. The ablation of the different initialization methods for
prototypes.

E. Analysis of Prototype Initialization Methods
The semantic prototype is the core of our method. In

this section, we construct an ablation study to explore the
impact of different prototype initialization methods on the
model, including Random weights, CLIP [3], BERT [1],
and GloVe [2], and the results are summarized in Tab. 4.
From Tab. 4, we have the following observations: (1) Using
random weights initialization, the model achieves the best
R@K performance, but its mR@K result is low. (2) Us-
ing the initialization of the word embedding obtained from
Clip’s text encoder, the model achieves the best mR@K
performance. (3) Using the GloVe, the model achieves the
best comprehensive performance M@K and relatively good
R@K and mR@K performance.

F. Feature Fusion Function Selection
In the Sec. 3.1 of our manuscript, we use the F(s,o)

to fuse the features of subject and object. In order to ex-
plore the impact of different fusion functions, we test the
following functions: 1) Add function, i.e., F(s,o) = s+o.



on ha
s in of

w
ea

ri
ng

ne
ar

w
ith

ab
ov

e
ho

ld
in

g
be

hi
nd

un
de

r
sit

tin
g 

on
w

ea
rs

st
an

di
ng

 o
n

in
 fr

on
t o

f
at

ta
ch

ed
 to at

ha
ng

in
g 

fr
om ov
er fo
r

ri
di

ng
ca

rr
yi

ng
ea

tin
g

w
al

ki
ng

 o
n

pl
ay

in
g

co
ve

ri
ng

la
yi

ng
 o

n
al

on
g

w
at

ch
in

g
an

d
be

tw
ee

n
be

lo
ng

in
g 

to
pa

in
te

d 
on

ag
ai

ns
t

lo
ok

in
g 

at
fr

om
pa

rk
ed

 o
n to

m
ad

e 
of

co
ve

re
d 

in
m

ou
nt

ed
 o

n
sa

ys
pa

rt
 o

f
ac

ro
ss

fly
in

g 
in

us
in

g
on

 b
ac

k 
of

ly
in

g 
on

gr
ow

in
g 

on
w

al
ki

ng
 in

0

20

40

60

80

100

R
ec

al
l@

10
0

Motifs
baseline
PE-Net(PL)
PE-Net

Figure 2. Recall@100 of all predicate classes of Motifs, baseline, PE-Net(PL), and PE-Net on the PredCls task. Predicates are sorted in
decreasing order of sample frequency.

2) Sub function, i.e., F(s,o) = s − o. 3) Multi func-
tion, i.e., F(s,o) = s ∗ o. 4) Learnable linear layer, i.e.,
F(s,o) = f(s⊕ o), where f(·) is a fully connected linear
layer, ⊕ is the concatenation operation. 5) Hybrid function,
i.e., F(s,o) = ReLU(s + o) − (s − o)2. The experimen-
tal results are shown in Tab. 5. In Tab. 5, we observe that
similar results are obtained for the different functions, and
Hybrid function achieves the best mR@K and M@K per-
formance.

G. Necessity of Instance-varied Semantic Con-
tents

For Prototype-based Modeling in PE-Net, we use the
instance-varied semantic content to model the diversity of
each instance. To verify its necessity, we remove the se-
mantic contents vs, vo, and up from the representations of
subject (s), object (o), and predicate (o), and model them
only with class-specific semantic prototypes:

s = Wsts,

o = Woto,

p = Wptp.

(3)

The experimental results are shown in Tab. 6. In Tab. 6,
we observe that the model’s performance decreases substan-
tially when the semantic contents are removed, e.g., 61.6%
vs. 67.2% at R@100 and 26.1% vs. 33.8% at mR@100 on
PredCls task. It demonstrates that semantic contents are
crucial for entity-predicate matching, otherwise the model
only learns fixed matching between entity pairs and predi-
cates, lacking diversity.

H. Qualitative Results of Predicate Recall
For a more intuitive illustration of PE-Net’s relation

recognition ability, we provide Recall@100 on each pred-
icate among Motifs [4], baseline, PE-Net(PL), and PE-
Net, as shown in Fig. 2. From the results, we have sev-

Function Predcls
R@50/100 mR@50/100 M@50/100

Add 65.3 / 67.6 30.6 / 32.9 48.0 / 50.3
Sub 65.6 / 67.7 30.2 / 32.5 47.9 / 50.1

Multi 65.4 / 67.4 30.8 / 33.2 48.1 / 50.3
Learnable 65.4 / 67.6 30.8 / 32.9 48.1 / 50.3

Hybrid 64.9 / 67.2 31.5 / 33.8 48.2 / 50.5

Table 5. The ablation for different feature fusion functions.

Model Predcls
R@50/100 mR@50/100 M@50/100

w/o sc 57.3 / 61.6 22.9 / 26.1 40.1 / 43.9
PE-Net 64.9 / 67.2 31.5 / 33.8 48.2 / 50.5

Table 6. The ablation of the necessity of instance-varied semantic
content in Prototype-based Modeling. w/o sc denotes remove se-
mantic contents from Prototype-based Modeling.

eral observations as follows: 1) Our baseline model out-
performs Motifs on most predicates, illustrating the effec-
tiveness of our Prototype-based Modeling in PE-Net. In-
tuitively, Prototype-based Modeling provides compact and
distinctive entity representations, which greatly contributes
to relation recognition in SGG. 2) When constrained by
PL, PE-Net(PL) significantly outperforms the baseline on
almost all predicates. It suggests that PL effectively es-
tablishes the matching between entity pairs and predicates,
which is superior to learning decision boundaries with train-
able classifiers by itself. 3) After being integrated with PR,
PE-Net’s performance on fine-grained predicates is signifi-
cantly improved. It powerfully demonstrates that PR sig-
nificantly enhances the discrimination between predicate
prototypes, enabling the model to distinguish fine-grained
predicates from coarse-grained ones, and thus achieves ac-
curate entity-predicate matching.
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