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In the supplement, we provide additional details and re-
sults to support our main contributions.

1. Visualization of the Latent Space

The t-SNE [8] visualizations of latent space are shown
in Fig. 1. Figure 1a illustrates the latent subspace with ran-
domly initialized category centroids. With a randomly ini-
tialized unseen centroid cu, the sampled unseen latent codes
wi = Gmap(z, c

u) can not be localized correctly around
the target anchors Θ. Additionally, the randomly initial-
ized trainable anchors Φopt are unable to approximate the
target anchors. Fig. 1b depicts the latent space after latent
anchor localization. The trainable anchors successfully ap-
proximate the targets and correctly pull the entire subspace
towards the neighborhood of target anchors, roughly esti-
mating the distribution of unseen latent codes. For latent
subspace refinement, as shown in Fig. 1c, the target anchors
are disregarded because we use the perceptual loss instead
of the approximation loss. Thus, the trainable anchors break
away from the target anchors.

2. Implementation Details

In this section, we complement the implementation de-
tails, including inversion, conditional discriminator, and
other training details.

StyleGAN Inversion. For StyleGAN inversion, we use
the optimization loss proposed in II2S [10] together with a
similarity loss [2] to optimize the latent codes in our imple-
mentation.

*Equation from the main body.
†Equal Contributions.
‡Corresponding authors.

Similarity Loss in Eq. 7*. Following [2], we define the
similarity loss by:

Lsim(x, x̂) = 1− ⟨C(x), C(x̂)⟩, (1)

where C is a ResNet50 [3] trained with MOCOv2 [1].
Conditionial Discriminator. The conditional discrimi-

nator uses a projection head [6]. The features d of an image
x are extracted by the convolution layers of the discrimi-
nator Dconv , i.e., d = Dconv(x). The inner product of d
and class embedded vector is calculated to produce a con-
ditional real/fake estimation. To achieve the supervision for
the extra unseen category, we extend the embedding param-
eter p from Rns×dhid to R(ns+1)×dhid , where ns and dhid
represents the number of seen categories and dimension of
the hidden layer. For the regularization of the discrimina-
tor during latent subspace refinement, the output features of
convolution layers are normalized before calculating the L2

norm considering the magnitude of the loss.
Other training details. We use the term kimgs to de-

note the number of training steps as [4]. kimgs = n means
the network is optimized with total times of n ∗ 1000 using
unseen images only. For latent subspace localization, we
optimize for 1kimgs times. For latent subspace refinement,
we optimize for 5kimgs time. The experiments are done on
an NVIDIA GeForce RTX 3090.

3. Analysis of Noise Intensity Factor

We introduce a noise intensity factor t as an extra hy-
perparameter to control image generation. The intensity
factor controls the magnitude of the noise, which is crucial
to reveal the overall generation capability of the optimized
generator. We further analyze the influence of the number

1



t-SNE for w-space

unseen latents
seen latents
trainable anchors
target anchors

(a) randomly initialized

t-SNE for w-space

unseen latents
seen latents
trainable anchors
target anchors

(b) anchor-localized

t-SNE for w-space

unseen latents
seen latents
trainable anchors
target anchors

(c) subspace-optimized

Figure 1. Visualization of the latent space of randomly initialized, anchor localized, and subspace optimized. The dashed area is enlarged
to the lower left corner. The unseen and seen latent codes are sampled with a Gaussian noise z and the corresponding category centroid c.
Trainable anchors Φopt are parameters that are optimized to approximate the inverted target anchors Θ during latent subspace optimization.

of optimization steps (Sec. 3.2) and the number of samples
(Sec. 3.3) under different noise intensities.

3.1. Noise Intensity

The intensity factor t ∈ [0, 1] achieves control by x̂ =
Gu(z ∗ t, cu), where z is a randomly sampled noise. We
carry out experiments across varying levels of noise inten-
sity and show the comprehensive generation capability by
presenting FID and LPIPS curves.

As is shown in Fig. 2 and Fig. 3, the majority of FID
curves exhibit a hyperbolic shape. This can be explained
from the perspective of the latent space. As the intensity
factor lies around zero, all the produced images are visu-
ally similar, leading to high FID. When the noise intensity
goes up and lies in the optimal interval, the sampling area is
limited to the high-confidence region of the subspace. This
results in the generation of reliable unseen images. Con-
versely, the high-intensity noise greatly increases the sam-
pling range of the latent space, so the latent codes at the
edge of the subspace will produce images with a seman-
tic shift. Consequently, the distance between the generated
distribution and the unseen distribution widens.

Note that the FID curve under the 1-shot setting shows
a monotonous decreasing tendency when the training step
is larger than 2kimgs. This indicates that even if we set
the factor t = 1, the marginal area of the subspace can still
produce unseen features. However, the generator is essen-
tially overfitting to the unseen categories. Since the sub-
space trained with the full intensity is based on 100 samples,
it is unreasonable to expect that a complete subspace with
t = 1 can be solely determined through k unseen samples.

Regarding LPIPS, all LPIPS curves demonstrate a mono-
tonically increasing trend, suggesting a strong correlation
between the range of latent code sampling and generation
diversity.
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(d) 4-shot LPIPS
Figure 2. Statistical analysis of the optimization steps.
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Figure 3. Statistical analysis of the number of shots k.

3.2. Number of steps

In contrast to the previous emphasis on curve shapes, we
will concentrate on the relationship among curves in the fol-
lowing analysis. We visualize the FID and LPIPS curves



under different optimization steps in Fig. 2. As the number
of training iterations increases, the FID and LPIPS curves
for both the 1-shot and 4-shot settings exhibit a similar pat-
tern. It is noticeable that, at the same level of the noise
intensity, both FID and LPIPS gradually decrease, implying
that the distribution is gradually aligned as the optimization
progresses. However, a certain degree of diversity is un-
avoidably lost in the process.

3.3. Number of shots

Fig. 3 shows the experimental results conducted on the
different number of shots. With the increase of k, FID no
longer shows a monotonous decreasing trend. For instance,
when k = 8, FID is only superior to that of k = 1 during
the initial stages (Fig. 3a) of optimization. However, after
sufficient training (Fig. 3c), k = 8 exhibits a considerable
advantage in the interval [0.5, 1]. This indicates that a larger
number of inputs requires more optimization to capture un-
seen features.

In contrast, In contrast, LPIPS exhibits a consistent trend
where, under the same noise, larger values of k result in
smaller LPIPS scores. However, it is apparent that the dis-
parity between the curves gradually diminishes as the factor
t increases. This is because our optimization incorporates
a magnitude regularization term (Eq. 3*) that encourages
the anchors Φopt to cluster around the centroid cu. Conse-
quently, the image generated by a zero noise and a centroid,
i.e., x̂cen = Gu(z ∗ 0, cu), can be viewed as an average es-
timate of the referenced unseen images. Since a larger k in-
creases the likelihood of image duplication among different
few-shot tasks, the averaged images x̂cen result in greater
similarity, leading to the decrease of LPIPS.

4. Limitations

seen
unseen_1
unseen_2
unseen_3
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Figure 4. Visualization of unseen classes. The right part shows
failure cases produced by some outliers (2/3 of images on the left).

The proposed method has two main limitations: the in-
fluence of outliers and the optimization speed.

Outliers can lead to poor content quality of generated
images. We visualize three unseen classes, each of them
with 100 randomly selected samples in Fig. 4a. We can see
most samples of the unseen class form a coarse subspace,
demonstrating that our assumption is valid for most samples
(also proved in all of our quantitative results). On the other

hand, this can also show the failure case if we select two
outliers to form a 3-shot input. As shown in Fig. 4b, as
outliers may not be properly inverted into the latent space,
using them produces images with corrupted semantics (e.g.
monkey face, cat head, horse-like neck).

Another limitation is generation speed. Compared with
other few-shot generation works, our method has no advan-
tage in time, as we require additional time to adapt to each
unseen task. We will delve into ways to expedite the process
of adapting to new categories.

5. Comparison with Image Translation

Few-shot image generation and few-shot image-to-
image translation [7] are closely related. We compared our
approach with COCO-FUNIT [7] in Fig. 5. While COCO-
FUNIT can successfully transfer some low-level details of
an unseen input image to a target image when given content
information, it fails to provide correct category semantics,
such as a triangular mouth for the dog. The results reveal
the main difference between the two areas that few-shot im-
age translation focuses on transferring the style, while we
focus on generating new samples for an unseen category.

Input/Style Content COCO-FUNIT Ours 1-shot
Figure 5. Comparison with COCO-FUNIT.

6. Visualization

The results obtained under 1-shot and 3-shot settings
are exhibited in Fig. 7. Results of 1-shot image genera-
tions indicate that latent subspace optimization is capable of
performing abundant class-irrelevant transformations (e.g.,
number, shape, orientation) on the single unseen image. For
the 3-shot setting, the produced images demonstrate that la-
tent subspace optimization achieves accurate extraction of
the category-relevant information of unseen images.

7. Qualitative Ablation

In our ablation study, we present various visualizations
of the generated images using different variations of our
method. Fig. 6 demonstrates the qualitative results of dif-
ferent components of the four introduced variants of our
method. Latent anchor localization benefits the optimizing
procedure by reducing the burden of the network to capture
general knowledge. Without latent anchor localization, the
generator cannot focus on learning the detailed features of
the unseen category, but to learn structural information si-
multaneously during the later refinement. Latent subspace



Figure 6. Visualization of ablation experiments. Three unseen images on the left constitute a 3-shot image generation task. Results of w/o
localization, w/o refinement, w/o regularization and full are provided from the top to the bottom on the right side.

refinement plays a crucial role in incorporating unseen fea-
tures. Without refinement, the generator struggles to ac-
curately model the unseen distribution, resulting in distor-
tion. The regularization term is crucial in maintaining diver-
sity. In the absence of the regularization term, the generated
flowers share common structural features, such as similar
shapes.

8. Image Editing

Image editing is a common downstream application of
generative networks. To demonstrate the robustness of our
work, we extensively conduct experiments on unseen image
editing. We initially apply latent subspace optimization for
the unseen image. The unseen image x̂ can be reconstructed
by x̂ = Gu(a, cu), where Gu, cu and a represents the re-
fined generator, the unseen centroid and the optimized an-
chor respectively. Following [9], we manipulate the unseen
images with attribute-relevant channels in the style space
S. Fig. 8 shows the editing of four attributes from top to
bottom. We view the unseen samples as 1-shot tasks and
perform latent subspace optimization on each sample inde-
pendently. Even though the generators are optimized sep-
arately, they still share the same style space, enabling the
use of the same channels to achieve the same editing ef-
fects. The success of editing illustrates that the pretrained
semantic-meaningful directions in the latent space are well
preserved during latent subspace optimization. As a result,
these directions can be applied to unseen image editing.

9. High-quality Image Generation

We present additional results for high-resolution few-
shot image generation using the CelebA-HQ [5] portrait

dataset. Fig. 9 shows the results of 4-shot image genera-
tion, where each task involves generating four 512 × 512
samples from the same unseen category. Our experimental
results indicate that even at high resolutions, the generator
does not degrade during the optimization process, but re-
tains the generative ability.

10. Few-shot Incremental Image Generation
The latent subspace optimization framework supports in-

cremental schemes. Qualitative results have been displayed
in Fig. 10. In the incremental experiment, 4-shot tasks of
different categories are fed to the generator sequentially.
The results in Fig. 10 show that the generator can adapt well
to novel unseen categories while maintaining its generative
capability of the previously trained categories. This success
in incremental generation confirms the effectiveness of our
method, as it indicates that different unseen categories can
be accurately located and refined in the latent space.
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Figure 7. Results under 1-shot and 3-shot settings. The left most column of each part shows the input few-shot images.



Figure 8. Results of image editing on unseen images. The edited attributes are eye pose, smile, mustache, and illumination from top to
bottom.
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Figure 9. Results of high-quality image generation. The images on the left depict 4-shot image generation tasks, whereas the resulting
images are displayed on the right-hand side.



Figure 10. Results of few-shot incremental generation. The leftmost column lists the incremental tasks. We exhibit three incremental
procedures with each procedure containing three few-shot tasks. Three sequential tasks with the blue, green, and red bounding boxes are
fed to the generator orderly. The incremental generation results are listed on the right.
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