
Decentralized Learning with Multi-Headed Distillation
Supplementary Materials

A. Analysis and Discussion of Our Method
A.1. Analysis of Multi-Headed Distillation

As described in the main text, the multi-headed distilla-
tion involves simultaneous training of multiple model heads
that communicate with each other. Rigorous theoretical
analysis of this process in the most general case is very com-
plicated. However, by making several assumptions, here we
find an approximate solution for the weights of the heads of
rank k being given the weights of the heads of rank k−1. In
our future work, we hope to study this model for different
prediction aggregation techniques and compare conclusions
obtained from this simple model with those obtained empir-
ically in realistic systems.

Let X be the input space and L = Rd be the logit
space, where d is the number of classes. The logits f(x)
for a model f : X → L are then converted to label as-
signment probabilities p(y|x) via softmax, i.e., p(y|x) =
softmax(f(x)).

Consider a single client hi : X → L distilling informa-
tion from some model head h : X → L. The corresponding
distillation loss L[hi;h] admits many possible choices, but
we will assume that

L ≡ Ex∼DD [hi(y|x;ψi) ‖ ph(y|x)]

with D being the shared (proxy) dataset and D being some
divergence (more general f -divergence or KL-divergence
as some examples). The distillation is then carried out by
performing optimization of L, for example via gradient de-
scent:

∆ψi = −γ ∂L
∂ψi

.

Notice that the components of ψi corresponding to the
model backbone may receive updates from multiple heads
reusing the same model embedding.

In our system, we assume that there is a set of heads
{h(1)i , h

(2)
i , . . . , h

(n)
i } for each client i. For simplicity, let

us first consider distillation procedure independent of pre-
diction confidence. In this case, the loss for head k of the
client i may look like:

L(k)
i ≡

N∑
j=1

ρij Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
,

where

Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
≡ Ex∼DD

[
p
(k)
i (y|x)

∥∥∥ p(k−1)j (y|x)
]
,

p
(k)
i (y|x) is a shorter notation for p

h
(k)
i

(y|x) and ρij is some
distribution defining the probability of picking a particular
client for distillation. Again, here we assume that ρij does
not depend on the sample confidence and is simply fixed.

While we talked about h(k) distilling to h(k−1), we have
not yet discussed the ”main head” h(1). This head is nor-
mally trained locally on the client’s private data. For sim-
plicity, in the following we thus assume that its behavior is
known, i.e., h(1)i is a specified function of the training step.
Furthermore, in the following, we start analyzing the prob-
lem by assuming that all h(1)i already converged and are all
generally different due to some differences in the client’s
private data. The behavior of all other heads is then defined
by the losses outlined above.

Let us first consider the simplest case of ρij = δij . In
other words, each head only distills from the same client’s
”prior” head. The choice of h(n)i = · · · = h

(1)
i would obvi-

ously minimize all losses L(k)
i since all corresponding Γ[·]

values vanish. But as soon as we introduce a small correc-
tion ρij = δij + νij with

∑
j νij = 0, this trivial solution is

no longer optimal. Instead, each client’s head is now opti-
mizing:

L(k)
i = Γ

[
h
(k)
i

∥∥∥h(k−1)i

]
+

N∑
j=1

νij Γ
[
h
(k)
i

∥∥∥h(k−1)j

]
.

Notice that if Γ was a metric in the h space, we could
interpret this optimization objective geometrically as a min-
imization of the head’s distance to its lower-order state (to-
wards h(k−1)i) coupled with a weak (∼ ν) attraction towards
a number of other heads (h(k−1)j). See Figure 7 for illustra-
tion.

Here we have to make yet another simplifying assump-
tion and consider a prescribed model backbone (and cor-
responding embedding) that we are not optimizing or up-
dating with backpropagated gradients. Doing so, we dis-
entangle individual heads and can treat their optimization
as independent tasks. For sufficiently small νij it will hold
that p(k)i = p

(k−1)
i +O(ν) and we can therefore write:

L(k)
i = Ex∼D

{
D
[
p
h
(k−1)
i +κ

(k)
i

∥∥∥ ph(k−1)
i

]
+

+

N∑
j=1

νijD
[
p
h
(k−1)
i +κ

(k)
i

∥∥∥ ph(k−1)
j

]}
,

Figure 7. Illustration of multi-head distillation as discussed in Ap-
pendix A.1. Large red arrow shows strong distillation of h(k)

i to
h
(k−1)
i and smaller gray arrows indicate attraction towards h(k−1)

j

with effective “strength” νij .

where h(k)i ≡ h(k−1)i + κ
(k)
i and κ(k)i ∼ O(ν). Introducing

δ
(k)
i ≡ p(k)i − p

(k−1)
i , we obtain:

L(k)
i = Ex∼D

{
D
[
p
(k−1)
i + δ

(k)
i

∥∥∥ p(k−1)i

]
+

+
∑
j

νij D
[
p
(k−1)
i + δ

(k)
i

∥∥∥ p(k−1)j

]}
.

Noticing that the first term needs to be decomposed near the
global minimum and the second term permits linear expan-
sion, we obtain:

L(k)
i ≈ Ex∼D

{
D′′
[
p
(k−1)
i

∥∥∥ p(k−1)i

] δ(k)i δ
(k)
i

2
+

+
∑
j

νij D
′
[
p
(k−1)
i

∥∥∥ p(k−1)j

]
δ
(k)
i

}
,

where D′′ and D′ are the derivatives of D with respect to
the first argument. Recalling that δ(k)i ∈ Rd we can rewrite
the loss function as:

L(k)
i ≈ Ex∼D

[
δ>Aδ + b>δ

]
,

where δ ≡ δ(k)i for brevity,

A ≡ D′′
[
p
(k−1)
i

∥∥∥ p(k−1)i

]
/2

is effectively a matrix and

b ≡
∑
j

νij D
′
[
p
(k−1)
i

∥∥∥ p(k−1)j

]
∈ Rd

can be thought of as a column vector.

At this point we can connect the probability distribution
perturbation δ to the logit perturbation κ ≡ κ

(k)
i using the

fact that pm ≡ ehm/Z, where Z ≡
∑
k e

hk (we omit this
simple calculation here):

p
(k)
i = p

h
(k−1)
i +κ

(k)
i

= p
(k−1)
i + δ =

= p
(k−1)
i + κ ∗ p(k−1)i − (κ · p(k−1)i)p

(k−1)
i ,

where a ∗ b is an element-wise product of two vectors and
therefore:

δ = κ ∗ p(k−1)i − (κ · p(k−1)i)p
(k−1)
i ≡ Cκ, (6)

where C is a matrix constructed from the components of
p
(k−1)
i (x) ∈ Rd. Notice that

∑
m δm = 0, which agrees

with δ being the perturbation of the normalized probability
distribution.

Finally, remember that κ itself is a perturbation of model
logits. Given the sample embedding ξi(x) ∈ Rt, the sample
logits are constructed as Wiξi(x) with Wi being a d×tma-
trix. The perturbation κ transforming W

(k−1)
i ξi into W

(k)
i ξi

can thus be characterized by the logit weight perturbation
µ ≡ µ

(k)
i := W

(k)
i − W

(k−1)
i and we get κ = µξ(x).

Combining everything together, we see that the loss func-
tion transforms to:

L(k)
i ≈ Ex∼D

[
ξ(x)>µ>C>ACµξ(x) + b>Cµξ(x)

]
,
(7)

where A, C and b ∼ ν all depend on the sample x via
p
(k−1)
i (x) and ξ is a function of x, while µ is effectively an

unknown sample-independent matrix that we need to tune
with the goal of minimizing L(k)

i . The optimum can be
identified by taking a derivative with respect to µαβ and
setting it to 0:

Ex∼D
[
2(ξ(x)>µ>C>AC)αξβ(x) + (b>C)αξβ(x)

]
= 0.

This is a linear equation on µ ∼ ν that can be solved in
a closed form to give us a logit weight perturbation µ as a
complex nonlinear function of νij and {p(k−1)` }.

Note that since µ is only a small perturbation, we can
introduce W

(k)
i as a function of a continuous parameter k

and approximate dW
(k)
i /dk with a finite difference W

(k)
i −

W
(k−1)
i = µ leaving us with a differential equation (the

approximation is valid in the first order in ν):

dWi(k)

dk
= G [ν, {W`(k)}]

with G being a linear function with respect to ν, but very
complex nonlinear function with respect to {W`}. If νij
is localized around i = j (which would be the case for
communication patterns with partial connectivity, like in the

case of long chains), this differential equation resembles a
complex nonlinear diffusion equation defining the spread
of information across the clients as we look at deeper and
deeper heads (with the head rank k essentially playing the
role of time).

It is also worth noting here that if ν was not fixed, but
was itself a function of model confidence (while still re-
maining small), our conclusions would not change except
that ν itself would now itself be a complex nonlinear func-
tion of {W`(k)} and x. In our future work, we hope to
study the effect that this confidence-dependent aggregation
has on head dynamics and the final stationary state.

Finally, let us look at the stationary state of system dy-
namics. Equation (7) suggests that µ = 0 is a local optimum
when b>C = 0, or∑

i,j

νijD
′ [pi‖pj] Cik = 0,

or after noticing that D′[pi‖pj] = pj/pi and recalling that
C is defined by Eq. (6) we obtain for every k:

Ex∼D

∑
i,j

νijpj (δik − pk)

 = 0. (8)

Since
∑
j νij = 0, the trivial solution of this system of

equations is the case of identical models, i.e., p1 = · · · =
pn, but since generally the models might have different
embeddings and cannot be made identical, the solution of
Eq. (8) restricts the system stationary state.

A.2. Value of p(y|x) as Classifier Confidence

In our model distillation approach, we need to combine
predictions of multiple different model heads. If all pre-
dictions pk(y|x) (by heads {hk}) come with reliable error
estimates, this information can be taken into account. For
example, if we know that for the true distribution p(y|x) and
every prediction pk(y|x) it holds thatD[pk(y|x)‖p(y|x)] ≤
ek(x) with D being some divergence, the true p(y|x) be-
longs to the intersection of “balls”3 Bk ≡ {p′|D[p′‖p] ≤
ek}. We can then choose any point in this set and compute
a prediction error as a maximum distance from a chosen
distribution to any point in the intersection. Unfortunately,
however such reliable measures of classifier error are not
generally available and even approximating them can be
quite difficult.

Instead we choose a very simple approach based on esti-
mating classifier confidence and picking the most confident
model, effectively ignoring other predictions. The confi-
dence measure itself is chosen as a value of the largest com-
ponent of the classifier prediction o(x) ≡ softmax(f(x; θ))
with f(x; θ) = Wξ(x; θ) and ξ being the embedding vector.

3note that D is not generally a metric

Why choose maxk ok. This value has a number of triv-
ial properties that can actually make it a useful measure of
classifier uncertainty. First is that after seeing a supervised
training sample (x, y), the value of oy(x) is increased. Sec-
ond is that if the class prototypes in the embedding space
are nearly orthogonal for different classes, then updates for
samples of different classes would not “interfere” with each
other and high-confidence predictions would not generally
be disrupted by observing unrelated samples with differ-
ent labels. For a simple logits layer Wξ(x) trained with
cross-entropy loss, both of these properties trivially follow
from the following expression for ∆ok(x′) after training on
a sample (x, y):

∆ok(x′) = λok(x′)[ξ(x) · ξ(x′)]×

×
∑
i

(δk,i − oi(x′)) (δy,i − oi(x)) .

Drawbacks. But while maxk ok(x) has these useful
properties, it is not guaranteed to be a reliable measure
of classifier confidence for out-of-distribution samples and
the training objective never explicitly optimizes for that4.
A density model ρ(x) would allow detecting such out-
of-distribution samples, but could also reveal information
about the client samples in their private dataset. Combin-
ing classification models with locally-trained density mod-
els, or adopting other existing similar techniques could be a
logical extension of our present work.

A.3. Distillation as Revelation of Some Information
about Model Weights

The canonical version of FedAvg combines the knowl-
edge of individual clients by periodically aggregating their
weight snapshots. Distillation-based techniques are instead
based on communicating model predictions on datasets ac-
cessible to all participants. While these two approaches
appear to be different, communication in distillation-based
methods can of course also be viewed as a way of revealing
incomplete information about model weights.

The amount of revealed information can be defined
as follows. Assuming the knowledge of the prior p(θ)
on the model weights and model predictions (y1, . . . , yn)
on a public dataset D∗ = (x1, . . . , xn), one can com-
pare the difference of entropies for the original p(θ) and
p(θ|y1, . . . , yn) with

p(θ|y1, . . . , yn) =
p(y1, . . . , yn|θ)p(θ)∫
dθ p(y1, . . . , yn|θ)p(θ)

.

4Contrast this to the energy-based models, for example, where the en-
ergy update and the MCMC sampling are explicitly contributing to the
model “awareness” of what in-distribution samples are and are not.

While generally intractable, it might be possible to obtain
the lower bound on the amount of the revealed informa-
tion by training a model that predicts the weights θ from
(y1, . . . , yn).

Deeper understanding of this question can have an im-
pact on the optimal choice of the public dataset D∗ that
would allow us to retrieve the knowledge of interest from a
trained model using only a small number of samples. Ongo-
ing research on dataset distillation [7,27,36] is very closely
related to this question.

B. Additional Experiments and Experimental
Data

B.1. Effect of Distilling to Self and Same-Level
Heads

In Section 4.2.2 we reported that including a head into
the list of its own distillation targets (“self”) improved the
model accuracy, but the gain was still smaller than that of
a model with multiple auxiliary heads. Here we explore
what happens if we use the head as its own potential distil-
lation target, while also using a number of auxiliary heads.
Furthermore, what if we modify our method to include dis-
tillations to other heads of the same rank (see Figure 9)?

We conducted a set of experiments with a heterogeneous
dataset with s = 100, νemb = 1, νaux = 3, four auxil-
iary heads and 250 randomized labels per each of 8 clients.
The results of experiments using different combinations of
distillation targets and both ∆ = 1 and ∆ = 2 (choosing
two other clients at a time as potential distillation targets)
are presented in Table 3. We observed that using same-
level heads and “self” targets separately provides notice-
able benefit only for earlier heads. But when used together,
these two techniques result in ∼ 1% accuracy improve-
ment and this improvement is realized for the 2nd auxiliary
head. Also, not unexpectedly, using two clients to distill to
(∆ = 2) instead of one, leads to a noticeable 1.5% accuracy
improvement. Combined together, all these techniques, in
conjunction with using the entire ImageNet as the public
dataset improve the accuracy to 59.4% if trained for 60k
steps, or 65.7% if trained for 180k steps.

B.2. Dependence on the Public Dataset Size

In a separate set of experiments, we trained 8 clients with
4 auxiliary heads, s = 100, νemb = 1, νaux = 3 and 250
randomly assigned “private” labels and “private” samples
drawn from 70% of the ImageNet training data. The re-
maining 30% of ImageNet samples were fully or partly used
as a public dataset, i.e., γpub ≤ 30%. As one would expect,
increasing the size of the “public” dataset while fixing the
amount of “private” training data has a positive impact on
the final model performance (see Table 4).

B.3. Training Algorithms

The proposed distributed learning algorithm is summa-
rized in Algorithm 1. In our experiments, we used a modi-
fied version of this technique, communicating model check-
points instead of directly communicating model predictions
(see Algorithm 2).

Algorithm 1 Core Distributed Learning Algorithm
Input: Private datasets {Di}Ki=1, public dataset D∗
Output: Trained models {Mi}Ki=1

1: for client Ci (run concurrently) do
2: for iteration t ∈ [0, T] do
3: Sample a private mini-batch (xpriv, ypriv) ∼ Di
4: Sample a public mini-batch (xpub, ypub) ∼ D∗
5: Communicate with clients from et(i) to get

their embeddings and/or predictions5 for (xpub, ypub)
6: Do a single backpropagation step updatingMi

to optimize Li given by Eqs. (1) and (2), (4)

Algorithm 2 Distributed Learning Algorithm with Commu-
nication via Model Checkpoints
Input: Private datasets {Di}Ki=1, public dataset D∗
Output: Trained models {Mi}Ki=1

1: for client Ci (run concurrently) do
2: Initialize Pi ← {}
3: for iteration t ∈ [0, T] do
4: if t % SP = 0 then
5: Update Pi adding a new or replacing a ran-

dom existing checkpoint (if up to capacity NP) with a
new random checkpoint from et(i)

6: Sample a private mini-batch (xpriv, ypriv) ∼ Di
7: Sample a public mini-batch (xpub, ypub) ∼ D∗
8: Use ∆ random checkpoints from Pi to compute

embeddings and/or predictions for (xpub, ypub)
9: Do a single optimization step updating Mi to

minimize Li given by Eqs. (1) and (2), (4)

C. Additional Tables and Figures
C.1. Raw Experimental Data

Tables 5 and 6 contain raw values used for producing
Figure 3, while Tables 7 and 8 complement Figure 4.

5can send sample IDs rather than samples themselves

Experiment βMain
priv βAux1

sh βAux2
sh βAux3

sh βAux4
sh

Base 70.9% 46.7% 51.8% 53.9% 54.6%
∆ = 2 71.1% 50.9% 55.1% 56.1% 56.0%
SL 70.8% 48.6% 53.6% 54.7% 54.7%
SF 71.3% 48.1% 53.4% 54.9% 54.8%
SL+SF 70.3% 53.0% 55.5% 53.9% 52.4%
All 70.8% 53.5% 55.8% 54.5% 52.9%
All+ 72.7% 56.5% 59.4% 57.9% 56.1%
All+, 180k steps 76.2% 62.3% 65.7% 65.0% 64.0%

Table 3. Experimental results exploring the usage of different distillation heads trained for 60k steps. Here “Base” is the original experiment
with ∆ = 1 and conventional heads as described in Sec. 4.2.2; “SL” adds same-level heads to distillation targets; “SF” adds the distilled
head (“self”) as a potential target; “All” combines same-level and “self” heads and ∆ = 2 (each step distilling to two other clients), “All+”
is the same as All, but also uses the entire ImageNet as the public dataset.

Public DS fraction 10% 20% 30% All
main head βpriv 70.1% 71.1% 70.9% 71.9%
last aux head βsh 52.4% 53.9% 54.1% 55.3%

Table 4. The dependence of the main head “private” accuracy
βpriv and the “shared” accuracy of the 4th auxiliary head on the
size of the public dataset (fraction of ImageNet training set). Ex-
periments were conducted for a system of 8 clients with 4 auxiliary
heads, s = 100, νemb = 1, νaux = 3 and 250 randomly assigned
“private” labels. Private training samples were drawn from 70% of
the ImageNet training set in all experiments. “All” column shows
the accuracy attained by using the entire ImageNet training set as
a public dataset (while still using only 70% of it as private data).

Figure 8. Conceptual diagram of a distillation in a distributed
system. Clients use a “public” dataset to distill knowledge from
other clients, each having their primary private dataset. Individ-
ual clients may have different architectures and different objective
functions. Furthermore, some of the “clients” may themselves be
collections of models trained using federated learning.

Figure 9. A pattern used for distilling multiple auxiliary heads
with two additional types of distillation targets: (a) distilling to
heads of the same “rank” (dashed), (b) distilling to “self” (dot-
ted). Here distilling to the same “rank” means, for example, that
Aux1 head is distilled to the most confident of Main heads, or Aux1
heads of adjacent clients. Distilling to “self” means that the sam-
ples on which the distilled head is already most confident will ef-
fectively be ignored.

Figure 10. Alternative visualization of s = 0 results from Fig-
ure 3.

Figure 11. Alternative visualization of s = 100 private accuracies
from Figure 3.

Figure 12. Alternative visualization of s = 100 shared accuracies
from Figure 3.

νemb νaux β
(m)
priv β

(m)
sh β

(aux)
priv β

(aux)
sh

0.0 0.0 46.3% 46.3% 0.1% 0.1%
1.0 52.2% 52.0% 56.0% 56.0%
3.0 54.1% 53.5% 57.3% 57.0%
10.0 54.3% 54.1% 57.1% 57.1%

1.0 0.0 48.5% 48.5% 0.1% 0.1%
1.0 53.6% 53.5% 57.3% 57.2%
3.0 55.4% 55.2% 58.6% 58.5%
10.0 54.1% 53.6% 56.9% 56.3%

3.0 0.0 48.3% 48.0% 0.1% 0.1%
1.0 54.3% 54.0% 58.2% 57.6%
3.0 55.7% 55.5% 59.3% 58.8%
10.0 53.3% 53.4% 56.5% 56.3%

Table 5. Results for 8-client experiments with 250 random classes
per client, s = 0 and a varying values of νemb and νaux.

νemb νaux β
(m)
priv β

(m)
sh β

(aux)
priv β

(aux)
sh

0.0 0.0 68.0% 25.2% 0.1% 0.1%
1.0 70.6% 29.1% 70.5% 42.0%
3.0 70.9% 30.0% 70.1% 43.3%
10.0 68.0% 25.3% 66.0% 39.7%

1.0 0.0 69.0% 26.0% 0.1% 0.1%
1.0 71.8% 29.8% 71.5% 43.0%
3.0 72.0% 29.9% 71.0% 44.1%
10.0 66.8% 23.0% 65.1% 37.5%

3.0 0.0 65.2% 24.9% 0.1% 0.1%
1.0 71.7% 29.7% 72.1% 39.1%
3.0 71.8% 29.7% 71.9% 40.8%
10.0 65.4% 23.1% 63.4% 36.4%

Table 6. Results for 8-client experiments with 250 random classes
per client, s = 100 and a varying values of νemb and νaux.

Heads 1 2 3 4

β
(m)
priv 56.2% 56.1% 55.8% 55.9%

β
(m)
sh 56.1% 55.8% 55.8% 55.5%

β
(1)
priv 59.6% 59.6% 59.4% 59.4%

β
(1)
sh 59.4% 59.5% 59.6% 59.4%

β
(2)
priv 60.0% 59.7% 59.7%

β
(2)
sh 59.7% 59.9% 59.5%

β
(3)
priv 59.5% 59.1%

β
(3)
sh 59.5% 59.1%

β
(4)
priv 58.7%

β
(4)
sh 58.6%

Table 7. Results for 8-client experiments with 250 random classes
per client, s = 0, νemb = 1, νaux = 3 and a varying number of
auxiliary heads (separate columns).

Heads 1 2 3 4

β
(m)
priv 72.5% 71.6% 71.1% 72.5%

β
(m)
sh 30.5% 32.5% 33.1% 32.7%

β
(1)
priv 71.4% 70.6% 70.7% 71.4%

β
(1)
sh 44.7% 46.6% 46.9% 46.4%

β
(2)
priv 68.5% 68.1% 68.7%

β
(2)
sh 51.6% 52.0% 51.6%

β
(3)
priv 66.1% 66.1%

β
(3)
sh 53.8% 53.6%

β
(4)
priv 63.4%

β
(4)
sh 54.5%

Table 8. Results for 8-client experiments with 250 random classes
per client, s = 100, νemb = 1, νaux = 3 and a varying number of
auxiliary heads (separate columns).

Notation Meaning
D∗ Public dataset
K Total number of clients
C = {C1, . . . , CK} A set of clients
Di Private dataset of the client Ci
Mi Private model of Ci
Ti Private task (typically unique label distribution) of Ci
t Global training step
Gt Communication graph at step t
Et Set of edges of Gt
et(i) Set of clients connected to Ci via a set of outgoing edges from Et
Li Local objective optimized by Ci
Li,CE Cross-entropy loss of Ci (on private data Di)
Lαdist Collection of different distillation losses enumerated by α
ψαi (x) Local activations computed by Ci for sample x (for distillation)
Φαt,i(x) ≡ {φαj (x)|j ∈ et(i)} Remote activations computed by et(i) for sample x (for distillation)
φαj (x) Remote activations computed by Cj for sample x
ξi(x) Intermediate embedding produced by Ci for sample x
νemb Regularization weight for embedding distillation
ρ Monotonically growing function used for embedding distillation
ψnorm
i (x) Normalized embedding of x (for Ci)

hi(ξi(x)) Main head of the modelMi

haux
i (ξi(x)) Auxiliary head of the modelMi

Laux
dist[h

aux,h] Prediction distillation loss
νaux Auxiliary loss weight
Λ(h(x)) “Confidence” of the classifier prediction h(x)
Q Function used in a particular form of prediction distillation loss
H Confidence of all related distillation targets
{haux,1, . . . ,haux,m} Collection of multiple auxiliary heads
D Underlying labeled dataset used to generate experimental {Di}Ki=1

S Set of all samples from D
`i Subset of all labels treated as primary labels for Ci
γpub Fraction of public set samples
s Dataset “skewness”
Pi A rolling pool of model checkpoints for Ci
NP Number of checkpoints in each pool
∆ Number of random checkpoints from Pi picked at every step for distillation
SP Number of steps between pool updates
βpriv ModelMi accuracy on the private dataset Di
βsh ModelMi accuracy on the public dataset D∗

Table 9. Summary of notation.

