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Figure 1. Structure of sub-modules. (a) is the structure of shared
shallow feature extraction layer. (b) is the structure of reconstruc-
tion layer. (c) is the structure of residual Swin transformer block.
(d) is the structure of Swin transformer block.

Figure 2. Hardware of the proposed hybrid camera system.

1. Supplementary details
Blur interpolation transformer (BiT). First, we add
some details of the BiT network structure in this part. The
shared shallow feature extraction layer is illustrated in Fig. 1
(a). It consists of two 3 × 3 2d convolution layers with
stride equal to 2, and a GELU [2] activation layer between

Table 1. Configurations of RBI dataset.

Train Test

Video pairs 50 5
Blur frame-rate 25 25
Sharp frame-rate 500 500
Blur exposure time 18ms
Sharp exposure time ≈2ms
Total blurred frames 1250 125
Total sharp frames 25000 2500
Resolution 640× 480
Camera BITRAN CS-700C

them. The lightweiht reconstruction layer is shown in Fig. 1
(b). It only consists of a 3 × 3 2d convolution layer and a
PixelShuffle [9] layer with upscale factor equal to 4. Re-
garding residual Swin transformer block (RSTB), we bor-
row the structure from SwinIR [4], as illustrated in Fig. 1
(c). It consists of 6 stacked Swin transformer blocks (STB)
and a 3 × 3 2d convolution layer at the end for learning
the features in a residual manner. The STB follows the
design of [5], as illustrated in Fig. 1 (d). It applies the
standard multi-head self-attention mechanism [10] to lo-
cally shifted windows. First, the input features are reshaped
from RH×W×C to R

HW
M2 ×M2×C by dividing the features

into HW
M2 non-overlapping local windows of shape M ×M .

In our case, we set M = 8. Then, self-attention mechanism
is applied to the features F ∈ RM2×C in each local win-
dow. The query, key, and value matrices Q, K, and V are
calculated as follows:

Q = FPQ, K = FPK , V = FPV , (1)

where PQ, PK , and PV are shared projection matrices
across local windows, and Q, K, and V are projected fea-
tures with shape RM2×d. The process of self-attention is
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Figure 3. Supplementary comparison on Adobe240 [8] and the real-world RBI dataset.

Figure 4. Cross-validation on BSD dataset.

Table 2. Effect of selected indices for DTS strategy. The modifications are based on BiT.

t=1/2 & t=1/2 t=3/8 & t=5/8 t=1/4 & t=3/4 t=1/8 & t=7/8 t=0 & t=1

PSNR ↑ 29.70 29.79 29.86 29.91 29.90
SSIM ↑ 0.894 0.895 0.897 0.898 0.900
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Table 3. Additional ablation for DTS.

PSNR ↑ SSIM ↑
BiT (DTS w/ t) 29.24 0.891
BiT 29.90 0.900

Table 4. Additional ablation for TSE.

PSNR ↑ SSIM ↑ Parameters [M] ↓
BiT+ (larger) 30.12 0.902 12.049
BiT++ 30.45 0.908 11.345

Table 5. Ablation study of t encoding scheme.

BiT (freq.) BiT BiT (freq.) BiT

Dataset Adobe240 Adobe240 RBI RBI

PSNR ↑ 34.27 34.34 29.85 29.90
SSIM ↑ 0.948 0.948 0.897 0.900

Table 6. Effect of pretraining from Adobe240 to RBI. The met-
rics are calculated only using middle predicted results (t = 0.5).

BiT Pre-BiT BiT++ Pre-BiT++

PSNR ↑ 29.90 30.79 30.45 31.32
SSIM ↑ 0.900 0.916 0.908 0.922

Table 7. Comparison with Jin et al. [3] that takes single blurred
image as input on synthetic dataset Adobe240 and our real-
world dataset RBI. Red denotes the best performance, and blue
denotes the second best performance.

Adobe240 RBI

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Jin et al. [3] 25.03 0.776 25.27 0.814

BiT 34.34 0.948 29.90 0.900
BiT++ 34.97 0.954 30.45 0.908

described as follows:

Attention (Q,K, V ) = SoftMax
(
QKT

√
d

+B

)
V, (2)

where B denotes the learnable relative positional encod-
ing. Besides, multi-head mechanism is adopted to the self-
attention (MSA), i.e., performing self-attention in parallel
on the channel dimensions. We set the number of heads
to 6 and the total number of channels to 174. Along with
a multi-layer perception (MLP) and LayerNorm operation,

the whole process of STB is as follows:

F = MSA(LN(F )) + F, (3)
F = MLP (LN(F )) + F. (4)

Besides, shifted window partition is alternated between
blocks to achieve cross-window connections, where the
shift size is half of the window size M .

Real-world blur interpolation dataset (RBI). The ac-
tual diagram of our hybrid camera is illustrated in the Fig. 2.
In addition, the detailed configurations are shown in Ta-
ble 1. As for geometric alignment, the two cameras are first
mechanically aligned assisted with collimated laser beams.
Later, a homography correction using standard checker pat-
tern is conducted, so as to reduce the alignment error to less
than one pixel. Lens distortion will occur when two lenses
are behind the beam-splitter, thus we put the lens in front
(only one lens). Even with any distortion, the two cameras
are identical, so the effect on learning is limited. There is
no post-processing, such as flow-based alignment, but only
homography. This real-world dataset can be applied to mul-
tiple applications, such as image/video deblurring, blur in-
terpolation, and blur synthesis [1]. By simply modifying
the parameters of the hardware, we can obtain a richer and
more diverse dataset in the future.

2. Supplementary results

Effect of selected indices for DTS strategy. We present
an ablation study of the indices selected for the DTS strat-
egy in Table 2. t=0 & t=1 represents the default setting for
DTS strategy. These ablation studies are conducted on RBI
dataset. Experimental results show that it is better to select
sharp frames closer to the dual-end of the exposure time as
supervision.

Additional ablation for DTS. We add an ablation study
of supervising dual-end by going through FM with t as in-
put, namely “BiT (DTS w/ t)”, as shown in Table 3. The
results support that DTS can make the form of shared fea-
tures more conducive to arbitrary interpolation.

Additional ablation for TSE. In contrast to BiT/BiT+,
BiT++ has a larger reconstruction layer with 11.345M pa-
rameters, which is a mere 0.67% increase over the 11.270M
parameters in BiT/BiT+. We train a larger BiT+ network
with 12.049M parameters by increasing the output channels
of FM without TSE, as shown in Table 4. The results sup-
port that TSE actually brings extra information more than
the effect of more parameters.
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Ablation study of t encoding scheme. We show the com-
parison to commonly used frequency encoding in Table 5.
As mentioned in the manuscript, we find that simple en-
coding by concatenating feature channels can provide good
enough performance, even slightly better than the widely
used frequency encoding.

Pretraining using Adobe240. We show the effect of pre-
training from Adobe240 [7, 8] to our RBI in Table 6. The
BiT initialized with checkpoints of the BiT trained on
Adobe240 is denoted as Pre-BiT, and the corresponding full
model with temporal symmetry is denoted as Pre-BiT++.
The results show that pretraining with Adobe240 can bring
benefits to the model. Although the data of Adobe240 is
synthetic, its scene diversity is useful to the model.

Supplementary comparison results. Due to the direc-
tional blurring problem [12], it is very unlikely that the
method with one blurred image as input produces results
with the same decomposition order as the ground-truth se-
quence. The poor quantitative performance of Jin et al. [3]
in Table 7 prove this point. Besides, we supplement the
visual results of Jin et al. [3] and DeMFI [6] on both
Adobe240= [8] and the real-world RBI dataset to further
validate the superior performance of our method, as illus-
trated in Fig. 3.

Third-part data validation. To further validate the ro-
bustness of the model trained on our real-world dataset,
RBI, we test our model on the third-party data from
BSD [11]. The qualitative results are shown in Fig. 4.
Sharp motion sequence are successfully rendered out of the
blurred images. This again highlights the necessity and im-
portance of proposing a real dataset.

Video demos. In the end, we provide several video clips
compared with previous methods including RPF4 [7,8] and
DeMFI [6] in https://zzh-tech.github.io/BiT/ for reference.
BiT++ upsamples the temporal resolution by a factor of 16,
resulting in smooth video clips with clearer details. Further
improvement of the long-term temporal consistency (across
several blurred input images) will be one of our future di-
rections.
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