
BEV@DC: Bird’s-Eye View Assisted Training for Depth Completion
Supplementary Material

1. Overview
This supplementary material provides more techni-

cal details and experimental results about the proposed
BEV@DC. Specifically, the algorithm written in pseudo-
code for the PV-SPN is introduced in section 2. The def-
initions of our experiment metrics are shown in section 3.
The detailed architecture and the training configuration of
our network are presented in section 4. Lastly, we conduct
more experiments and demonstrate more visualization re-
sults in section 5.

2. Algorithm for PV-SPN
The detailed algorithm for the Point-Voxel Spatial Prop-

agation Network (PV-SPN) is provided in the Algorithm 1.

Algorithm 1: PV Spatial Propagation Network

Input: BEV completion prediction DBev

Output: Fine-grained 3D completion result
Generate coarse 3D completion via interpolating
height dimension V 3D = MLP (DBev)
for l← 0 to iterations L do

Voxel inflation: V 3D ←V3Dinf ;
Transform voxel to LiDAR: V
← Voxel2LiDAR(V3Dinf );

K-nearest neighbors search S3D for vi ∈ V in
the original LiDAR point cloud P to obtain
N(vi)← {pi ∈ S3D(vi, P )};
Geometric-aware aggregation A3D on N(vi):
sli← A3D(V l−1|P,N (vi));

Update vli ∈ V l based on sli and threshold k:
vli ← {1sli≥k , 0sli<k};

3. Evaluation Metrics
We choose six different metrics for our experimen-

tal evaluation, including root mean square error (RMSE),
mean absolute relative error (REL), percentage of pixels
satisfying δτ , mean absolute error (MAE), inverse RMSE

(iRMSE), and inverse MAE (iMAE), which is consistent
with all the previous works. [1, 5–7] The definitions of all
the metrics are shown as follows.
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∑
x

| d̂x − dx
dx
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δτ : max(
dx

d̂x
− d̂x

dx
) < τ, τ ∈ {1.25, 1.252, 1.253} (6)

where dx is the ground truth depth at valid pixel x (with
non-zero depth value), d̂x is the predicted depth at pixel x,
n is the total number of the valid pixels.

4. Implementation Details.
Network Setup. Our proposed method consists of two

streams: (1) A Image branch that takes the RGB and depth
as input and generates a coarse depth map with the guid-
ance affinity and the confidence map for the following 2D
SPN module to refine. (2) A LiDAR branch that intakes
the LiDAR voxel grid and produces the BEV prediction for
the PV-SPN module to generate the fine-grained 3D voxel
completion. The detailed network architecture for the 2D
and 3D branches is illustrated in Fig 1. In the camera
branch, we apply a U-Net [8] encoder-decoder architecture
with ResNet-34 [3] as the backbone for a fair comparison
with the previous works. We adopt dynamic SPN [5] in the
camera branch as it yields better performance by dynami-
cally generating affinity matrices during iterations. In the
LiDAR branch, we apply sparse convolution proposed in
MinkowskiNet [2] and construct the similar architecture as
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Figure 1. Detailed architecture of the individual components. Part (a) is the image branch that adopts 2D Unet [8] to process the RGB
image and corresponding sparse depth measurements. Part (c) is the LiDAR branch that generates BEV prediction from the LiDAR voxel
grid using a 3D Unet structure. Part (b) presents a SPBlock in the LiDAR branch. In the above figure, H,W represents the image height
and width while h,w,z denotes the voxel spatial shape. ResBlock with SE is a ResNet block [3] with stochastic depth [4]. c,k,s indicate the
output channel, kernel sizes, and stride.

the camera branch. The CRBD shares the same structure
as the image decoder while using a wider channel dimen-
sion since it fuses the features from both LiDAR and cam-
era branches. The number of neighborhood k in PV-SPN
is 16, and the hidden channels for the MLPs are identically
64. The propagation steps for both SPN and PV-SPN are 3.

Training Details. In our experiments, we use Adam
optimizer with β1=0.9, β2=0.999. We first train the cam-
era stream for 30 epochs with the initial learning rate of
1 × 10−3, and reduce the learning rate by half at 10, 15,
20 and 25, respectively. And we train our whole architec-
ture for 50 epochs with the initial learning rate of 1× 10−3,
which is decayed by half at 30, 35, 40 and 45, respectively.
All the experiments are on 4 NVIDIA V100 GPUs with a
batch size of 4.

5. Additional Experiments

Variations of 3D SPN. To get a fine-grained prediction
of 3D completion, PV-SPN is proposed to refine the coarse
voxel grids from the LiDAR branch. We extend the previous
2D Spatial Propagation Networks (SPN), including Convo-
lutional Spatial Propagation Network (CSPN), Non-Local
Spatial Propagation Network (NLSPN), and Dynamic Spa-
tial Propagation Network (DySPN) [1, 5, 6] that refine a 2D
coarse depth map to 3D space and compare them with our

Table 1. Comparison of four variations of 3D SPN on the KITTI
DC validation set.

3D SPN Modules Iterations
RMSE
(mm)

MAE
(mm)

3D CSPN [1] 12 733.4 190.8
3D NLSPN [6] 12 727.2 190.1
3D DySPN [5] 6 723.6 188.4
PV-SPN (ours) 3 719.6 187.1

PV-SPN to demonstrate the effeteness of this module. As
shown in Table 1, PV-SPN achieves the best performance
among all 3D SPN modules with the least number of itera-
tions.

LiDAR Branch in Other Camera-based Methods. Our
plug-and-play solution can be incorporated into different
camera-based methods. We extend our modules to one
classic camera-based method, i.e., NLSPN. The results on
KITTI are shown below, which demonstrates the benefits of
the LiDAR branch.

Model RMSE MAE iRMSE iMAE
NLSPN 783.3 228.9 2.7 1.2

NLSPN + ours 773.9 223.6 2.4 1.0

Visualization. Figure 2 demonstrates more visualization
results on KITTI dataset.



Figure 2. Visualization results on KITTI DC Online Benchmark. From left to right is RGB, our depth prediction, and error map.
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