
Appendix for: Class-Conditional Sharpness-Aware Minimization for Deep
Long-Tailed Recognition

A. Micro Benchmarks

A.1. Additional Ablation Studies

We conduct additional ablation studies on CIFAR-10-
LT and CIFAR-100-LT when the imbalance ratios are 50,
100, and 200, and the results are shown in Table 1, Table 2,
and Table 3, respectively. The presented results still well-
support the effectiveness of each stage operation.

Dataset cRT stage-1 stage-2 Acc.

CIFAR10-LT
" 81.14
" " 84.03
" " 85.69
" " " 85.81

CIFAR100-LT
47.73

" " 52.41
" " 52.73
" " " 53.24

Table 1. Ablation studies on CIFAR-10-LT and CIFAR-100-LT
when the imbalance ratio is 50.

Dataset cRT stage-1 stage-2 Acc.

CIFAR10-LT
" 75.12
" " 79.74
" " 81.68
" " " 82.42

CIFAR100-LT
43.39

" " 47.74
" " 48.20
" " " 48.77

Table 2. Ablation studies on CIFAR-10-LT and CIFAR-100-LT
when the imbalance ratio is 100.

A.2. Impact of the Perturbation Scale

We empirically examine the impact of the perturbation
scale to further verify the effectiveness of our derived char-

Dataset cRT stage-1 stage-2 Acc.

CIFAR10-LT
" 69.99
" " 76.51
" " 77.43
" " " 78.31

CIFAR100-LT
37.51

" " 43.12
" " 44.07
" " " 44.99

Table 3. Ablation studies on CIFAR-10-LT and CIFAR-100-LT
when the imbalance ratio is 200.

acteristic radius:

ρ∗c =

(
||w||2

2||∇wLc
S(w)||2

) 1
2

k−
1
4 (nc − 1)−

1
4 (1)

By multiplying a scaling factor r on the Eqn 1, we scale
the perturbation norm from 10−1 to 10−7, and the corre-
sponding results are presented in Figure 1. From the re-
sults, we observe that CC-SAM performs best when r is
set as 10−2, which demonstrates that there indeed exists a
optimal perturbation scale. However, the coefficient of the
characteristic radius ρ∗ (Eqn (4) in the main text) is not an
exact number and should be empirically tuned (see more
elaboration on this point in the Remarks of Section D).

A.3. The Superiority and Versatility of CC-SAM

As an augment version in DLTR, we apply CC-SAM to
LDAM and compare it with vanilla SAM in Table 4, from
which we can observe that CC-SAM is more beneficial to
LDAM than SAM, indicating its superiority in adapting to
DLTR. Besides, to show the versatility of CC-SAM, we fur-
ther equip it on GCL and show the improvement in Table 4.

A.4. Additional Flattening Operations Test on
Places-LT

To support our motivation, we further conduct verifica-
tion on Places-LT. By integrating model perturbation and
spectral normalization into the first stage of training, we

CIFAR-10-LT LDAM GCL

Imb. 200 100 50 200 100 50

Vanilla 70.15 73.26 78.16 79.03 82.68 85.46

+ SAM 68.59 74.20 78.88 - - -

+ CC-SAM 71.05 74.56 79.34 80.74 83.54 86.07

Table 4. Improvement of applying CC-SAM to LDAM and GCL.

42

43

44

45

46

47

48

49

50

51

52

-1 -2 -3 -4 -5 -6

A
cc
u
ra
cy

𝒍𝒐𝒈𝟏𝟎(𝝆 /𝝆∗)

Figure 1. The impact of the perturbation scale.

show that cRT still cannot be well improved and still has
much room compared to MisLAS and GCL.

36.70

37.60 37.66
37.96

40.15
40.64

34

35

36

37

38

39

40

41

cRT (Ori.) cRT (re-imp.) cRT+MP cRT + SN MiSLAS GCL

Figure 2. The results of simply applying flattening operations. ‘re-
imp.’ represents the re-implementation of cRT while ‘Ori’ is the
report result from the original paper. ‘cRT + MP’ represents ap-
plying model perturbation to cRT while ‘cRT + SN’ represents
integrating spectral normalization into cRT.

A.5. Training Time Cost

CC-SAM is intuitively more complex than its baselines,
as it requires multiple forward and an additional backward
computing. But since we only perturb a part of the model
parameters in our implementation and such an operation is
realized in a mini-batch, which contains fewer classes, it

results in a lower time cost than expected. Here we provide
a simple comparison of the time cost:

Table 5. Training time cost comparison running on Tesla T4.

CE LDAM CC-SAM

0.62h 0.68h 0.96h

B. Empirical Verification of the Nonvacuous
Bound

To verify that the error bound in Theorem 1 provides a
meaningful proxy for generalization performance (i.e., non-
vacuous), we empirically observe the value of training loss,
testing loss, and error bound of the head class (the class with
the greatest number of samples, 5000 on CIFAR-10-LT) on
CIFAR-10-LT. The corresponding curves are presented in
Figure 3. According to their changing values, we can find
that the square root term of Eqn 16 falls below 1 most of the
time.

C. Experimental Setting of Flattening Opera-
tions

C.1. SWA

SWA [4] seeks the flat minima by averaging the SGD
trajectory. We use the PyTorch official implementation 1

of SWA to experiment on each long-tailed model. During
each stage, the suggested standard decaying learning rate
strategy is used for the first 75% of training time, while the
learning rate is set to a high constant for the remaining 25%
of the time, where weight averaging occurs.

C.2. Spectral Normalization

Spectral normalization [1] endows the model 1-Lipschitz
continuity by dividing the square root of the largest eigen-
value. To release the computation burden, we adopt the

1https://pytorch.org/blog/stochastic- weight-
averaging-in-pytorch/.

0.00 25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 v
al

ue

Training Loss
Test Loss
Bound

Figure 3. Training loss, testing loss, and error bound of CC-SAM
vs. training epochs. All curves are evaluated on the full train-
ing/test sets using the same set of model parameters at the end of
each epoch, and are plotted for the whole period of stage 1 (200
epochs).

power iteration method 2 to estimate the eigenvalue, and the
iteration is set to 5.

C.3. Model Perturbation

Following the recent paper [8], we perturb the model pa-
rameters by adding Gaussian noise with a similar scale as
our method. Specifically, here we only perturb the classifier
with a Gaussian noise, whose norm is 0.001.

C.4. Gradient Normalization

As an advanced version of SAM, gradient normaliza-
tion [9] penalizes the gradient via an approximation of the
Hassian matrix:

▽ωL(ω) = (1−α)▽ωLS(ω)+α∗▽ωLS(ω+r∗ ▽ωLS(ω)

∥▽ωLS(ω)∥
)

(2)
where α and r are hyper-parameters. This method de-
rives the same perturbation direction as CC-SAM, but it still
works for i.i.d. situations while lacking the long-tailed spe-
cific designs. We re-implement and integrate it into long-
tailed models according to its publicly released code3.

D. Proof of Theorem 1 (Perturbative PAC-
Bayesian Generalization Bound)

Following the convention of the main text, we denote
scalars as s, vectors as s, matrices as S, sets as S, the num-
ber of samples as n and the number of parameters as k. To

2https://en.wikipedia.org/wiki/Power_iteration
3https://github.com/zhaoyang-0204/gnp

apply the PAC-Bayesian framework [7] to the generaliza-
tion of deep neural networks, we follow [2]. For any prior
P and posterior Q over the parameters w with probability
at least 1 − δ, over the choice of the training set S, the fol-
lowing generalization bound holds:

Ew∼Q[LT (w)] ≤ Ew∼Q[LS(w)]+

√
KL(Q||P) + log n

δ

2(n− 1)
.

(3)
We further adopt the condition

LT (w) ≤ Ew∼Q[LT (w)] (4)

from [3], meaning that adding Gaussian perturbation should
not decrease the test error. Note that this is expected to hold
in practice for the final solution but does not necessarily
hold for any w.

The KL-divergence between two k-dimensional Gaus-
sian distributionsN (µP ,ΣP) andN (µQ,ΣQ) is given by:

KL(N (µP ,ΣP)||N (µQ,ΣQ)) = (5)
1

2

[
tr(Σ−1

Q ΣP) + (µQ − µP)
TΣ−1

Q (µQ − µP)

−k + log

(
detΣQ

detΣP

)]
. (6)

To simplify Eqn 6, let the prior P and the poste-
rior Q be a k-dimensional isotropic Gaussian distribution
N (µP , σ

2
P I) and N (µQ, σ

2
QI) respectively, the KL diver-

gence can be written as:

KL(Q||P) =
1

2

[
kσ2

Q + ||µP − µQ||22
σ2
P

− k + k log

(
σ2
P

σ2
Q

)]
.

(7)
Given µP ,µQ and σQ, the KL divergence can be mini-

mized by an optimal σ∗
P
2 = σ2

Q+ ||µP −µQ||22/k, yielding

KL(Q||P) ≤ k

2
log

(
1 +
||µP − µQ||22

kσ2
Q

)
. (8)

Let σQ = σ, µQ = w and use the reparameterization
trick that w ← w + ϵ, assuming µP = 0 (parameters are
initialized by a zero-mean Gaussian prior), the generaliza-
tion bound in Eqn 3 becomes

Eϵ∼N (0,σ2I)[LT (w)] ≤ Eϵ∼N (0,σ2I)[LS(w)]+ (9)√√√√ k
4 log

(
1 +

||w||22
kσ2

)
+ 1

2 log
n
δ

(n− 1)
. (10)

Since log(1 + x) < x for all x > 0, providing a very
tight bound in the over-parameterized regime (k ≫ ||w||22

σ2 ,
which generally holds for modern neural networks, see ex-
periments in [2]), we have

Eϵ∼N (0,σ2I)[LT (w)] ≤ Eϵ∼N (0,σ2I)[LS(w)]

+

√
||w||22
4σ2 + 1

2 log
n
δ

(n− 1)
. (11)

In the above bound, ||ϵ||22 has chi-square distribution and
by Lemma 1 in [6], we have that for any positive t:

P (||ϵ||22 − kσ2 ≥ 2σ2
√
kt+ 2tσ2) ≤ exp(−t). (12)

Therefore, with probability at least 1 − 1/
√
n we have

that

||ϵ||22 ≤ σ2

(
2 ln(
√
n) + k + 2

√
k ln(
√
n)

)

≤ σ2k

(
1 +

√
ln(n)

k

)2

= kρ2. (13)

Substituting the above value for ρ back to the inequality
and using the assumption 4 and the training loss LS(w) ≤
1, gives us following inequality:

LT (w) ≤ Eϵ∼N (0,σ2I)[LT (w)] (Eqn 4) (14)

≤ (1− 1/
√
n) max

||ϵ||2≤
√
kρ
LS(w + ϵ) + 1/

√
n

+

√√√√√ ||w||22
4ρ2

(
1 +

√
log(n)

k

)2

+ 1
2 log

n
δ

(n− 1)
(15)

≤ max
||ϵ||2≤

√
kρ
LS(w + ϵ) +

√√√√ ||w||22
4ρ2 + log n

δ +O(1)
(n− 1)

,

(16)

which is exactly Theorem 1, where we arguably assume that
log(n),

√
k log(n)≪ ||w||22

ρ2 < n, k.
Remarks: Note that the assumption that the optimal

σ∗
P
2 = σ2

Q + ||µP − µQ||22/k can be attained might be
unrealistic since σP should be chosen before observing the
training data S, whereas µQ, σQ generally depend on S.
However, a relaxed bound can be derived by having a set of
predefined values for σP and pick the best one in that set.
See [3] and Theorem 2 of [5] for the discussion around this
technique, which results in an O(1) = 1 + 8 log(6n+ 3k).
Moreover, the approximations and the lesser terms (e.g.

1/
√
n in Eqn 15 and O(1) in Eqn 16) we made in the

process of deriving Theorem 1 indicates that the constant
coefficient of the characteristic radius ρ∗ (Eqn (4) in the
main text) is not an exact number, which should be empir-
ically tuned to realize the full potential of CC-SAM, and
is also beneficial for accommodating tighter/looser ver-
sions of PAC-Bayesian bound. However, the correlation be-
tween ρ∗ and the label frequency n as well as the gradient
∇wLS(w) do shed light on the design choices of CC-SAM,
which are proven effective in practice.

E. Loss Landscape
To better understand the sharpness of the deep long-

tailed model, we visualize their 2D loss landscapes via a
public tool 4 after training on CIFAR-10-LT in Figure 4-
9. The horizontal coordinate and vertical coordinate are the
step distances from the trained weights according to two
random directions. The maximum distance is set as the 1/3
norm of trained weights. Taking CE as the baseline, we
have the following observations, which are consistent with
those in the main text:

• LDAM is definitely sharper than CE.

• M2m has a flatter region under the overall and tail
evaluations but fails to be flat for head classes. This
is because M2m adopts an adversarial example gener-
ation method to translate samples from head classes to
tail classes for augmentation. Such a translation would
intuitively improve the performance of tail classes
while sacrificing the performance of head classes.

• MisLAS is still flatter than CE from each view.

• GCL’s loss landscapes looks pretty steep than others.
Generally, it looks flatter than CE (when encountering
large noise perturbations), but its local region (small
noise perturbations) is sharper from each view, which
has been concluded previously.

• CC-SAM is shown to have a rather flat minima. More-
over, it mainly presents an asymmetric valley as sug-
gested in [4].

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[2] Gintare Karolina Dziugaite and Daniel M. Roy. Computing
nonvacuous generalization bounds for deep (stochastic) neural
networks with many more parameters than training data. In
Proceedings of the Thirty-Third Conference on Uncertainty in
Artificial Intelligence, 2017. 3, 4

4https://github.com/marcellodebernardi/loss-
landscapes

[3] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam
Neyshabur. Sharpness-aware minimization for efficiently im-
proving generalization. In 9th International Conference on
Learning Representations, 2021. 3, 4

[4] Haowei He, Gao Huang, and Yang Yuan. Asymmetric val-
leys: Beyond sharp and flat local minima. Advances in neural
information processing systems, 32, 2019. 2, 4

[5] John Langford and Rich Caruana. (not) bounding the true
error. Advances in Neural Information Processing Systems,
14, 2001. 4

[6] Beatrice Laurent and Pascal Massart. Adaptive estimation of a
quadratic functional by model selection. Annals of Statistics,
pages 1302–1338, 2000. 4

[7] David A McAllester. Pac-bayesian model averaging. In Pro-
ceedings of the twelfth annual conference on Computational
learning theory, pages 164–170, 1999. 3

[8] Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan,
and Xiao-Ming Wu. Overcoming catastrophic forgetting in
incremental few-shot learning by finding flat minima. Ad-
vances in Neural Information Processing Systems, 34:6747–
6761, 2021. 3

[9] Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient
norm for efficiently improving generalization in deep learn-
ing. arXiv preprint arXiv:2202.03599, 2022. 3

0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(a) Overall.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(b) Head.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(c) Tail.

Figure 4. Loss landscape of CE. The left figure is the overall loss landscape, which involves all classes, while the central figure shows that
of the head class and the right figure shows that of the tail class. The red pentagram represents the point of the trained weights.

0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(a) Overall.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(b) Head.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(c) Tail.

Figure 5. Loss landscape of LDAM.

0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(a) Overall.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(b) Head.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(c) Tail.

Figure 6. Loss landscape of M2m.

0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(a) Overall
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(b) Head.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(c) Tail.

Figure 7. Loss landscape of MisLAS.

0 10 20 30 400

10

20

30

40

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(a) Overall.
0 10 20 30 400

10

20

30

40

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(b) Head.
0 10 20 30 400

10

20

30

40

Loss Contours around Trained Model

0
3
6
9
12
15
18
21
24
27

(c) Tail.

Figure 8. Loss landscape of GCL.

0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

1
4
7
10
13
16
19
22
25
28

(a) Overall.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

1
4
7
10
13
16
19
22
25
28

(b) Head.
0 10 20 300

5

10

15

20

25

30

35

Loss Contours around Trained Model

1
4
7
10
13
16
19
22
25
28

(c) Tail.

Figure 9. Loss landscape of CC-SAM.

