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This supplementary materials provides additional infor-
mation on the method and its performances. In particular,
more insights on the respective contributions of the flow, at-
tention mechanism and hierarchical learning are given. In
addition, supplementary results on another dataset, THU-
man3.0 [6], are shown.

1. Implementation Details

Depth images are rendered in resolution 2562 with a
fixed monocular camera system [5]. Our network is trained
on 510 pairs of depth images with batch size 2 for 496
epochs. During the inference, query points are uniformly
distributed in a regular grid of resolution 380%. The fi-
nal reconstruction meshes are extracted with the marching
cubes [2,3].

2. Flow Contribution
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Figure 1. From left to right: (a) Input depth map; (b) Shape com-
pletion without the flow; (c) Full model; (d) Ground truth.

We trained one model without the flow: all cross-frame
temporal paths are removed in the training and in the in-
ference. It contains therefore the single frame 2D feature
map F7, the coarse-dense feature map Q°, the sparse-fine
feature Q7 and the self-attention .4°°f. The model was
trained with the same data as full model and evaluated with
data used in Tab. 4 in the main paper. Table 1 provides

Method | IoU(%) 1 Chamfer-L1 [(x10™2)
w/o flow 85.5 1.044
Full model 86.1 1.047

Table 1. Ablation studies for the flow. Chamfer x 1072,

quantitative results while Figure 1 shows one example. De-
spite showing good performances with the Chamfer dis-
tance (Tab. 1) this model is more prone to large volumetric
errors, as in Fig. 1 in occluded parts, which impact less a
surface based metric.

3. Attention Mechanism
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Figure 2. Source/target depth images and the 20 highest self/cross
attention weights.

Figure 2 illustrates the attention module weights. Given
a query point on the right hand in the source frame, the bot-
tom images show the 20 pixels with the highest values of



Qqt¢ in equation 9 of main paper in both the source and target
frames. We note that the self-attention mechanism focuses
on the left hand for symmetry, while the cross-attention
mechanism focuses on points on the extremities for the flow
estimation, this in particular with the corresponding points
on the right hand.

4. Hierarchical Learning
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Figure 3. From left to right: (a) input depth maps; (b) Completion
without hierarchical module; (¢) Full model; (d) Ground truth.

Our approach adopts a coarse-to-fine hierarchical learn-
ing strategy to efficiently embed high-frequency 3D fea-
tures. In order to illustrate its contribution, we trained

a model without any hierarchical learning but containing
all the other modules, including the attention mechanism,
within which only the fine feature .7-"3{ p 1s fed into SConv3D
by Q7 = SConv3D(FJ,,vox!) (see equation 8 in main
paper). Figure 3 shows the comparison between the full
approach and without the hierarchical module. We ob-
serve that without coarse-level information, this model suf-
fers from high-frequency noises in the completions (see
Fig. 3(b) and (c)).

5. Other Data

We show here results on more challenging models, from
the THUman3.0 [6] dataset, with more complex cloth
styles. The model was trained as in the main paper (see
Sec. 4.2) without any fine tuning. Unlike CAPE [4] and
DFAUST [1], THUman3.0 provides identities in random
poses instead of consecutive sequential data. Moreover,
such data is generated directly from raw scan without fit-
ting with any template or parametric model. The rendered
depth is in general noisy, see Fig. 4(a), and we can not eval-
uate the flow with this dataset. However, even without any
temporal consistency our method can provide high quality
results, as illustrated in Fig. 4.
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Figure 4. THUman3.0 [6] models. From left to right: (a) Input depth maps; (b) Reconstructions from ShapeFormer [7]; (c) Reconstructions
from SeedFormer [8]; (d) our approach; (e) Ground truth.
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