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This supplementary materials provides additional infor-
mation on the method and its performances. In particular,
more insights on the respective contributions of the flow, at-
tention mechanism and hierarchical learning are given. In
addition, supplementary results on another dataset, THU-
man3.0 [6], are shown.

1. Implementation Details
Depth images are rendered in resolution 2562 with a

fixed monocular camera system [5]. Our network is trained
on 510 pairs of depth images with batch size 2 for 496
epochs. During the inference, query points are uniformly
distributed in a regular grid of resolution 3803. The fi-
nal reconstruction meshes are extracted with the marching
cubes [2, 3].

2. Flow Contribution

Figure 1. From left to right: (a) Input depth map; (b) Shape com-
pletion without the flow; (c) Full model; (d) Ground truth.

We trained one model without the flow: all cross-frame
temporal paths are removed in the training and in the in-
ference. It contains therefore the single frame 2D feature
map Ff , the coarse-dense feature map Qc, the sparse-fine
feature Qf and the self-attention Aself . The model was
trained with the same data as full model and evaluated with
data used in Tab. 4 in the main paper. Table 1 provides

Method IoU(%) ↑ Chamfer-L1 ↓(×10−2)
w/o flow 85.5 1.044

Full model 86.1 1.047

Table 1. Ablation studies for the flow. Chamfer ×10−2.

quantitative results while Figure 1 shows one example. De-
spite showing good performances with the Chamfer dis-
tance (Tab. 1) this model is more prone to large volumetric
errors, as in Fig. 1 in occluded parts, which impact less a
surface based metric.

3. Attention Mechanism

Figure 2. Source/target depth images and the 20 highest self/cross
attention weights.

Figure 2 illustrates the attention module weights. Given
a query point on the right hand in the source frame, the bot-
tom images show the 20 pixels with the highest values of
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qatt in equation 9 of main paper in both the source and target
frames. We note that the self-attention mechanism focuses
on the left hand for symmetry, while the cross-attention
mechanism focuses on points on the extremities for the flow
estimation, this in particular with the corresponding points
on the right hand.

4. Hierarchical Learning

Figure 3. From left to right: (a) input depth maps; (b) Completion
without hierarchical module; (c) Full model; (d) Ground truth.

Our approach adopts a coarse-to-fine hierarchical learn-
ing strategy to efficiently embed high-frequency 3D fea-
tures. In order to illustrate its contribution, we trained

a model without any hierarchical learning but containing
all the other modules, including the attention mechanism,
within which only the fine feature Ff

3D is fed into SConv3D

by Qf = SConv3D(Ff
3D, voxf ) (see equation 8 in main

paper). Figure 3 shows the comparison between the full
approach and without the hierarchical module. We ob-
serve that without coarse-level information, this model suf-
fers from high-frequency noises in the completions (see
Fig. 3(b) and (c)).

5. Other Data
We show here results on more challenging models, from

the THUman3.0 [6] dataset, with more complex cloth
styles. The model was trained as in the main paper (see
Sec. 4.2) without any fine tuning. Unlike CAPE [4] and
DFAUST [1], THUman3.0 provides identities in random
poses instead of consecutive sequential data. Moreover,
such data is generated directly from raw scan without fit-
ting with any template or parametric model. The rendered
depth is in general noisy, see Fig. 4(a), and we can not eval-
uate the flow with this dataset. However, even without any
temporal consistency our method can provide high quality
results, as illustrated in Fig. 4.
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Figure 4. THUman3.0 [6] models. From left to right: (a) Input depth maps; (b) Reconstructions from ShapeFormer [7]; (c) Reconstructions
from SeedFormer [8]; (d) our approach; (e) Ground truth.
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