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1. Experiments
1.1. Implementation Details
Ablation on Different Distributions. In our ablation
study, we discussed the performance of using different dis-
tributions in our Gaussian weighted instance fusion mod-
ule. Here we detailly describe the implementation of dif-
ferent distributions. For simplicity, we use the notation
▲ to represent the action boundary start point s, action
boundary end point e, and action score q.
Gaussian Distribution. As our defaulting template fu-
sion distribution, is sampled from the Gaussian distribution
of the form:
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Next we regard the confidence scores as the un-
normalized logits of action instances, then we can compute
the probability of sampling the k-th action instance as:
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, (2)

We fit the template distribution to the sampled distribution
{gk} by minimizing the cross-entropy loss between them.
That is:
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Where M is the number of action instances. Now we take
directive of loss with respect to µ▲ and let the derivative
equal to zero, we find the optimal fusion formulas as:

µ▲ =
∑
k=1

Mgk▲k (4)

Equation (4) is our fusion formulas for the Gaussian
weighted instance fusion.

Uniform Distribution. In this paragraph, we study the fu-
sion formulas when uniform distribution is used as the tem-
plate distribution. Assuming we are sampling the action
instances from a uniform distribution:

U(▲) =
1

b− a
(5)

where ▲ ∈ [a, b] is the definition field of this uniform dis-
tribution. For this distribution to be well defined, we must
have a ≥ min▲k and b ≤ max▲k.

Then we can write the formulas (10) as:

loss =
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−gklog(
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) (6)

= log(b− a)

≥ log(max▲k −min▲k)

For the equality to hold we have a = min▲k and b =
max▲k, and then the fused average ▲ is:

µ▲ =
1

2
(min▲k +max▲k) (7)

Exponential Distribution. In this paragraph, we consider
using the exponential distribution as the template distor-
tion. However, this distribution is not defined on the whole
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real number domain. It requires the random variable to be
greater than 0. To address this issue, we assume ▲−min▲k

satisfy the exponential distribution, which is:

E(▲) = λ▲ exp(−λ▲(▲−min▲k)), (8)

Accordingly, the sampling probability gk is computed as:

gk =
exp ((qk −min qj)/T )∑

i∈I∗
exp ((qk −min qj)/T )

, (9)

According to (8), we can rewrite (10) as:

loss =
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Taking the derivative of loss with respect to λ▲ and let
the derivative be 0, we get:

λ▲ =
1∑M

k=1 gk(▲k −min▲j)
(11)

Then the fusion average of ▲ is:

µ▲ =
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=
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Note that (12) is different from (4) because the sampling
probability gk is not the same.

T-Distribution. The T-distribution is a very important and
common distribution in statistics. It takes the form:
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where v is the parameter we are to extimate and B is the
beta function. For this distribution, the analytic fusion form
does not exists, however, we can estimate it’s fused aver-
age through Newton iteration of solving it’s extreme value.
This process is quite time consuming because it requires it-
erations.
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