
Supplementary Materials for “Interactive Segmentation as
Gaussian Process Classification”

Abstract

In the supplementary materials, we first provide more implementation details, including training strategy, network
architectures, and model hyperparameters. Then, we list the algorithm flowcharts of the training procedure and forward
process, respectively. Furthermore, we provide detailed derivations about Gaussian process posterior approximation and
efficient sampling in Sec. 4.2 of the main text. Finally, more experimental results are given, including quantitative evaluation
on more backbone segmentors and visual comparisons on more diverse images selected from different datasets. Besides, we
also analyze how the inference time changes as the number of clicks increases.

1. Implementation Details
Training strategy. For click simulation during training, following RITM [16], we use the iterative training strategy [10] with
a maximum of 3 iterations, and the maximum number of clicks is set as 24 with a probability decay of 0.8. Following [3,15,16],
we adopt Target crop by cropping the minimum external box of the previous mask and the newly added click and expanding
the box with a ratio of 1.4. Then, the target area is resized as 256×256 pixels for subsequent processing. Randomly cropping
and scaling are adopted for data augmentation, which follows the configuration in [3]. The entire framework is trained based
on Adam optimizer [8] with parameters β1 = 0.9 and β2 = 0.999. The initial learning rate is 5× 10−3 for SegFormerB0-S2
and ResNet50, and 5× 10−4 for HRNet18s-S2. Following [3, 16], the initialization of the three backbones utilizes weights
pre-trained on ImageNet, with the learning rate of the backbone weights reduced by a factor of 0.1.

Network architectures. In experiments, we adopt three backbone segmentors without the last-layer classifier for extracting
deep features. For the three backbones, i.e., SegFormerB0-S2 [3, 20], HRNet18s-S2 [3, 17], and DeepLabv3+ [2] with
ResNet50 [6], we set the number of feature channels d to 96, 48, and 48, respectively, and adopt the weights pre-trained on
ImageNet [4] as initialization. To feed the click information into the network, we follow [3, 16] and encode clicks as disks
with a fixed radius. Then, we follow the “Conv1S” architecture in [16] to encode the click maps along with the previous mask
into auxiliary features and add them to the image branch.

Model hyperparameters. For the backbone segmentors SegFormerB0-S2, HRNet18s-S2, and ResNet50 [6], the number
of basis functions l is set to 128, 256, and 256, respectively. For function-space deep kernel learning, the hyperparameter
η0 is initialized as 1 and ηt (t > 0) as e−1. In our experiments, we adopt the log computation manner to learn the kernel
hyperparameter ηt for guaranteeing its positiveness. Equivalently, the initialization is 0 for log η0, and−1 for log ηt (t > 0). For
weight-space deep kernel learning, we initialize the related parameters as θr ∼ N (0, Id), τr ∼ U(0, 2π), µw ∼ N (0, 0.25Id),
and σ2

w = 0.025.

2. Algorithm Flowchart
For the proposed GPCIS, we present the corresponding training pipeline and the forward process, as listed in Alg. S1 and

Alg. S2, respectively.

Algorithm S1 GPCIS Training Pipeline for an Epoch

Input: Training dataset D = {(Ii,ygt,i)}Ni=1, initialized trainable parameters Ω = {ψ, ξ,η,θ, τ ,µw, σw}, σ2 = ϵ2 = 0.01.
Output: Trained parameters Ω.

1: for (Ii,ygt,i) ∼ D do
2: yprev ← zeros like(ygt,i) ▷ Initialize the previous mask with a zero-map
3: Lclick ← point sampler(Ii,ygt,i) ▷ Simulate clicks for training
4: Niter ← random(0, 3) ▷ Number of iterations for iterative training strategy
5: for niter in range(Niter) do
6: (c, yc)← get click(yprev,ygt)
7: Lclick ← Lclick ∪ (c, yc)
8: yprev, ← GPCIS (Ii, Lclick,yprev; Ω, σ2, ϵ2) ▷ GPCIS forward process in Alg.S2
9: end for

10: ỹ,LVI ← GPCIS (Ii, Lclick,yprev; Ω, σ2, ϵ2)
11: L ← LNFL(ỹ,ygt,i) + αLVI

12: Ω← adam opt(L,Ω)
13: end for

Algorithm S2 GPCIS Forward Algorithm GPCIS (·)
Input: Input image I, click list Lclick, previous mask yprev , parameters Ω, σ2, ϵ2.
Output: Prediction ỹ, amortized variational inference loss LVI .

1: Sclick ← encode click(Lclick) ▷ Encode the clicks into disk maps
2: X← gψ(I, Sclick,yprev) ▷ Backbone segmentor
3: X̄← normalize(X) ∪ I
4: w ∼ N (µw, σ

2
wIl)

5: fprior ← Φ(X̄)w =
√

2/l cos(ΘT X̄+ τ)w ▷ Weight-space prior
6: X̄n,Φ(X̄n)← locate(X̄, Lclick), locate(fprior, Lclick) ▷ Features at clicked positions
7: mξ ← Softplus(MLP(X̄n)) ∗ yn
8: fn ∼ N (mξ, σ

2In)
9: Kn,n,Km,n ← kη(X̄n, X̄n), kη(X̄, X̄n)

10: fupdate ← Km,n(Km,n + ϵ2In)
−1(fn −Φ(X̄n)) ▷ Function-space update

11: ỹ← s(fprior + fupdate)
12: LVI ← −

∑n
c=1

[
yc log s(fc) + (1− yc) log(1− s(fc))

]
+ 1

2m
T
ξ (Kn,n + ϵ2In)

−1mξ.

3. Derivations
3.1. KL Divergence in Eq. (8)

For the variational distribution q(fn|Xn,yn) = N (mξ, σ
2In), the KL divergence in Eq. (5) can be written as:

min
ξ
DKL(q(fn|Xn,yn)||p(fn|Xn,yn))

⇒ min
ξ
−
∫
q(fn|Xn,yn) log

p(yn|Xn, fn)p(fn|Xn)

q(fn|Xn,yn)
dfn

⇒ min
ξ
−
∫
N (mξ, σ

2In) log(Π
n
c=1s(ycfc))dfn

−
∫
N (mξ, σ

2In) logN (0,Kn,n)dfn

+

∫
N (mξ, σ

2In) logN (mξ, σ
2In)dfn

⇒ min
ξ
−
∫
N (mξ, σ

2In)

n∑
c=1

[1{yc=1} log s(fc) + 1{yc=−1} log(1− s(fc))]dfn

− 1

2
(−mT

ξ K
−1
n,nmξ − log σ2 − log |Kn,n| − σ2Tr(K−1

n,n))

+
1

2
(− log σ2 − n− n log 2π)

⇒ min
ξ
−
∫
N (mξ, σ

2In)

n∑
c=1

[1{yc=1} log s(fc) + 1{yc=−1} log(1− s(fc))]dfn +
1

2
mT
ξ K

−1
n,nmξ

(S1)

where we have used p(fn|Xn,yn) ∝ p(yn|Xn, fn)p(fn|Xn), p(fn|Xn) = N (µn,Kn,n), and p(yn|Xn, fn) = Πnc=1s(ycfc),
as analyzed in Sec. 4.2 of the main text. Then, Eq. (S1) can be rearranged into Eq. (8) of the main text.

3.2. GP Posterior in Eqs. (9) (10)

After obtaining the Gaussian variational distribution q(fn|Xn,yn) = N (mξ, σ
2In), with f∗|X∗,Xn, fn ∼ N (µ∗|n,K∗,∗|n)

as defined in Eq. (1) of the main text, we can easily know that p(f∗|X∗,Xn,yn) =
∫
p(f∗|X∗,Xn, fn)q(fn|Xn,yn)dfn is

Gaussian. Next, we aim to compute the mean and variance of p(f∗|X∗,Xn,yn). The mean can be computed as:

E[f∗|X∗,Xn,yn]

=

∫
f∗ p(f∗|X∗,Xn,yn)df∗

=

∫
f∗(

∫
p(f∗|X∗,Xn, fn)q(fn|Xn,yn)dfn)df∗

=

∫
E[f∗|X∗,Xn, fn]q(fn|Xn,yn)dfn

=

∫
K∗,nK

−1
n,nfnq(fn|Xn,yn)dfn

=K∗,nK
−1
n,nEq[fn|Xn,yn]

=K∗,nK
−1
n,nmξ

(S2)

where we have used E[f∗|X∗,Xn, fn] = K∗,nK
−1
n,nfn and Eq[fn|Xn,yn] = mξ.

The variance can be computed as:

Var [f∗|X∗,Xn,yn]

=

∫
(f∗ − E[f∗|X∗,Xn,yn])

2p(f∗|X∗,Xn,yn)df∗

=

∫
[(f∗ − E[f∗|X∗,Xn, fn]) + (E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])]

2p(f∗|X∗,Xn,yn)df∗

=

∫
(f∗ − E[f∗|X∗,Xn, fn])

2

∫
p(f∗|X∗,Xn, fn)q(fn|Xn,yn)dfndf∗

+

∫
(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])

2

∫
p(f∗|X∗,Xn, fn)q(fn|Xn,yn)dfndf∗

+

∫
2(f∗ − E[f∗|X∗,Xn, fn])(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])

∫
p(f∗|X∗,Xn, fn)q(fn|Xn,yn)dfndf∗

=

∫ [∫
(f∗ − E[f∗|X∗,Xn, fn])

2p(f∗|X∗,Xn, fn)df∗

]
q(fn|Xn,yn)dfn (⋆)

+

∫ [∫
(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])

2q(fn|Xn,yn)dfn

]
p(f∗|X∗,Xn, fn)df∗ (†)

+

∫
2(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn, fn])(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])q(fn|Xn,yn)dfn

=Ep(f∗|X∗,Xn,fn)[(f∗ − E[f∗|X∗,Xn, fn])
2] + Eq(fn|Xn,yn)[(E[f∗|X∗,Xn, fn]− E[f∗|X∗,Xn,yn])

2] + 0

=Var [f∗|X∗,Xn, fn] + Eq(fn|Xn,yn)[(K∗,nK
−1
n,nfn −K∗,nK

−1
n,nmξ)

2] (‡)
=K∗,∗ −K∗,nK

−1
n,nKn,∗ +K∗,nK

−1
n,nσ

2InK
−1
n,nKn,∗

=K∗,∗ −K∗,nK
−1
n,n(In − σ2K−1

n,n)Kn,∗

(S3)

For the term (⋆), we have acknowledged that the integral in the brackets is equal to Var [f∗|X∗,Xn, fn] = K∗,∗ −
K∗,nK

−1
n,nKn,∗ and is irrelevant to the distribution of fn. For the term (†), we also use the fact that the integral in the brackets

is irrelevant to f∗. For the second term of (‡), we have used the fact that Eq[fn|Xn,yn] = mξ and Varq[fn|Xn,yn] = σ2In.
Based on Eqs. (S2)(S3), we can get:

p(f∗|X∗,Xn,yn) ∼ N (µ∗|n,K∗,∗|n), (S4)

where

µ∗|n = K∗,nK
−1
n,nmξ,

K∗,∗|n = K∗,∗ −K∗,nK
−1
n,n(In − σ2K−1

n,n)Kn,∗.
(S5)

Here Eqs. (S4)(S5) correspond to Eqs. (9)(10) in the main text.

3.3. Decoupled GP Posterior

In this subsection, we briefly review the background of the decoupled GP posterior for efficient sampling [18, 19] and
provide the derivations of Eq. (11) in the main text.

3.3.1 Double-Space Views of GP

Function-Space View of GP. In the main text, we have introduced the function-space view of GP in Sec. 3, i.e., reasoning
about the prior and posterior distribution of f evaluated at data points. Specifically, for a GP f ∼ GP(µ, k), we denote the
marginal fn = f(Xn). Given n noisy observations yn ∼ N (fn, σ

2In) at training data Xn, the GP posterior at testing data
X∗ is written as:

f∗|X∗,Xn,yn ∼ N (µ∗|n,K∗,∗|n), (S6)

where

µ∗|n = K∗,n(Kn,n + σ2In)
−1fn,

K∗,∗|n = K∗,∗ −K∗,n(Kn,n + σ2In)
−1Kn,∗.

(S7)

Weight-Space View of GP. As an alternative view, the weight-space view of GP is to view f as a weighted sum of basis
functions with weights w and to reason about the prior and posterior distribution of w. Specifically, for a GP with stationary
covariance function k(·, ·), e.g. RBF kernels, we can find the corresponding basis functions for approximation in the weight-
space, i.e., the random Fourier features [13] Φ given by Eq. (12) in the main text. Then, the GP can be expressed as:

f(·) = Φ(·)w =

l∑
r=1

wrϕr(·), (S8)

where l is the number of basis functions, ϕr(x) =
√
2/l cos(θTr x + τr), τr∼U(0, 2π), and θr ∈ Rd is sampled from the

spectral density of the kernel k(·, ·). Given the observations yn ∼ N (Φ(Xn)w, σ
2In), the posterior distribution of w is

w ∼ N (µw|n,Σw|n), where

µw|n = (ΦTΦ+ σ2In)
−1ΦTyn,

Σw|n = (ΦTΦ+ σ2In)
−1σ2,

(S9)

where Φ is short for Φ(Xn).

3.3.2 Pathwise Updates for Efficient Sampling of GP Posterior

To improve the sampling efficiency of the GP posterior, [18, 19] utilize the pathwise updates, i.e., first sampling from the GP
prior and then updating it using training data. The idea comes from Matheron’s rule for Gaussian random variables [7]:

Theorem 1 (Matheron’s rule). Let a and b be jointly Gaussian random variables. Then, the distribution of a conditioned on
b = β satisfies

(a | b = β)
d
= a+Cov(a, b)Cov(b, b)−1(β − b), (S10)

where d
= means equal in distribution and Cov(·, ·) is the covariance operation.

Matheron’s rule can be easily extended to the GP case:

Corollary 1. For a Gaussian process f ∼ GP(0, k) with marginal fn = f(Xn), the process conditioned on fn = un satisfies

(f | fn = un)(·)︸ ︷︷ ︸
posterior

d
= f(·)︸︷︷︸

prior

+ k(·,Xn)K
−1
n,n(un − fn)︸ ︷︷ ︸

update

. (S11)

Given the observations yn ∼ N (f(Xn), σ
2In), we can apply Corollary 1 to both function-space and weight-space of

GP [18, 19]:

Function-space: f∗ | yn︸ ︷︷ ︸
posterior

d
= f∗︸︷︷︸

prior

+K∗,n(Kn,n + σ2In)
−1(yn − fn − ε)︸ ︷︷ ︸

update

, (S12)

Weight-space: w | yn︸ ︷︷ ︸
posterior

d
= w︸︷︷︸

prior

+ΦT (ΦTΦ+ σ2In)
−1(yn −Φw − ε)︸ ︷︷ ︸

update

, (S13)

where ε ∼ N (0, σ2In). With the decoupled form, sampling from the function-space prior requires computing K
1/2
∗,∗ and

still has the computational cost of O(∗3), while sampling from the weight-space prior only requires sampling w ∼ N (0, Il),
whose cost is O(l). Besides, the update term from the function-space view can better utilize the representations of data with
the canonical basis [1]. Therefore, [18, 19] propose to sample from the constructed GP posterior with a weight-space prior
term and a function-space update term, written as:

f∗ | yn︸ ︷︷ ︸
posterior

d
≈ Φ(X∗)w︸ ︷︷ ︸

weight-space prior

+K∗,n(Kn,n + σ2In)
−1(yn −Φ(Xn)w − ε)︸ ︷︷ ︸

function-space update

. (S14)

3.3.3 Derivation of Eq. (11)

Suppose we have obtained the gaussian variational distribution q(fn|yn) = N (mξ, σ
2In), we aim to draw a sample f̃∗ from the

posterior distribution p(f∗|yn). An equivalent approach is to sample from the joint distribution p(f∗, fn|yn) = p(f∗|fn)q(fn|yn)
and only take the sampled f∗ as a sample from p(f∗|yn). Hence, following the ancestral sampling approach, we can first
sample fn ∼ q(fn|yn) and then we can easily sample from p(f∗|fn) using Matheron’s rule and obtain a drawn sample f̃∗.
Different from the case with noisy observations in Sec. 3.3.2, we have Cov(fn, fn) = Kn,n and ε disappears. Therefore, we
can easily derive the drawn sample from the decoupled GP posterior as:

f̃∗ = Φ(X∗)w︸ ︷︷ ︸
weight-space prior

+K∗,nK
−1
n,n(fn −Φ(Xn)w)︸ ︷︷ ︸

function-space update

, (S15)

where w ∼ N (0, Il) and fn ∼ q(fn|yn). Computing Eq. (S15) requires the cost of O(∗). Specifically, for the interactive
segmentation (IS) task, we have n≪ ∗, l≪ ∗, and d≪ ∗. Sampling and computing the weight-space prior term has the cost
of O(l + d) and the cost of computing the function-space update term mainly stems from K∗,n, which is O(∗). Although
computing K−1

n,n has the cost of O(n3), we will demonstrate in Fig. S1 that in practice the inference speed would not increase
much when the number of clicks n ≤ 20.

4. More Experimental Results
4.1. Quantitative Results

In Table 3 of the main text, due to the limited space, we have only provided the quantitative evaluations under the backbone
segmentor ResNet50, on Berkeley and DAVIS datasets. Here, we provide more comparisons under all three backbones, i.e.,
ResNet50, SegFormerB0-S2, and HRNet18s-S2 on all four datasets, i.e., GrabCut, Berkeley, SBD, and DAVIS. From Table
S1, we can see that our proposed GPCIS almost achieves the best or the second-best performance in all conditions, showing its
good generality.

Table S1. Complete experimental results with three backbones on four datasets. NoC100@90 and NoF100@90 for FocusCut on SBD are not
reported due to time-consuming inference process on the large dataset.

Backbone Method NoC100@90 NoF100@90 IoU&1 IoU&5 NoIC NoC100@90 NoF100@90 IoU&1 IoU&5 NoIC

SegFormerB0-S2 [3, 20]

Berkeley [11] DAVIS [12]
RITM [16] 4.44 1 79.06% 94.92% 0 18.38 49 71.32% 89.32% 86
FocalClick [3] 4.41 1 77.67% 94.49% 0 17.25 45 70.20% 89.19% 75
GPCIS (Ours) 3.50 1 80.14% 94.84% 0 16.92 42 73.03% 89.58% 5

GrabCut [14] SBD [5]
RITM [16] 1.82 0 83.71% 96.73% 0 12.23 299 63.91% 88.67% 881
FocalClick [3] 1.86 0 83.32% 95.65% 0 11.84 292 64.43% 87.95% 485
GPCIS (Ours) 1.76 0 85.50% 97.21% 0 11.72 279 64.11% 88.78% 12

HRNet18s-S2 [3, 17]

Berkeley [11] DAVIS [12]
RITM [16] 3.99 1 78.55% 93.60% 1 18.67 50 71.83% 88.53% 108
FocalClick [3] 4.48 2 80.34% 94.96% 1 17.14 46 72.61% 89.36% 79
GPCIS (Ours) 3.45 1 77.45% 95.07% 0 17.45 44 73.67% 89.02% 0

GrabCut [14] SBD [5]
RITM [16] 2.24 0 82.79% 93.34% 0 12.95 425 63.88% 88.01% 1282
FocalClick [3] 2.04 0 82.59% 94.59% 1 13.01 366 64.62% 87.18% 703
GPCIS (Ours) 1.94 0 82.80% 96.42% 0 11.83 317 63.81% 88.43% 54

ResNet50 [6]

Berkeley [11] DAVIS [12]
f-BRS-B [15] 6.21 2 77.06% 85.00% 1 22.62 57 70.97% 83.87% 0
RITM [16] 3.75 1 76.88% 94.66% 2 18.09 51 72.89% 89.14% 74
FocusCut [9] 4.63 1 78.89% 92.89% 1 19.00 45 72.71% 87.58% 6
FocalClick [3] 4.46 2 75.59% 94.90% 0 17.74 49 70.76% 88.90% 42
GPCIS (Ours) 3.36 1 79.43% 95.11% 0 17.03 44 75.67% 89.60% 2

GrabCut [14] SBD [5]
f-BRS-B [15] 4.18 1 80.79% 89.72% 0 16.61 479 74.60% 81.69% 954
RITM [16] 2.40 0 79.86% 95.15% 14 13.16 523 69.66% 89.02% 1250
FocusCut [9] 1.78 0 86.30% 94.99% 1 - - 69.32% 88.86% 150
FocalClick [3] 2.14 0 80.15% 95.50% 0 12.52 503 66.84% 89.30% 745
GPCIS (Ours) 1.82 0 84.44% 96.82% 0 11.23 331 67.51% 89.60% 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Click Index

32

35

40

50
60

100

200

500

1000

2000

SP
C

(m
s)

f-BRS-B
CDNet
RITM
FocusCut
FocalClick
GPCIS

Figure S1. Change of inference time with the click index, with Resnet50 as the backbone segmentor. The y-axis is in the log scale.

Table S2. Model complexity analysis about different components of RITM and GPCIS. FLOPs are computed using input images with size of
384×384.

Method FLOPs (GB) Params (MB)

Total Backbone Classifier/GP inference Total Backbone Classifier/GP inference

RITM 98.87 98.37 0.50 39.48 39.43 0.05
GPCIS 99.81 97.88 1.93 39.39 39.37 0.02

In Fig. S1, we report the relationship between the inference speed and the click index, i.e., the number of clicks n. From the
results, we can easily observe that although the computational cost of the efficient sampling framework Eq. (S15) is cubic w.r.t.
n, in real interactive segmentation situations where n is usually no larger than 20 and n≪ ∗, the inference speed would not
increase much as the number of clicks increases.

Based on the ResNet50 backbone, we analyze the model complexity of different model parts for the baseline RITM and
our GPICS. The difference between RITM and GPICS is that we replace the last-layer classifier in RITM with our proposed
GP inference module. Besides, for the backbone segmentor, in our GPCIS, we have reduced the number of channels of the
last-layer features extracted by the backbone. Table S2 reports the FLOPs and the number of parameters of different model
parts. As seen, GPCIS has smaller FLOPs and fewer parameters in the backbone, and the GP inference module has fewer
parameters and comparable FLOPs than the classifier of RITM.

4.2. Qualitative Results

We provide more visualizations of the output probability maps and prediction masks of different methods. The images
shown in Figs. S2, S3, S4, S5 are from GrabCut, Berkeley, SBD, and DAVIS datasets, respectively. It can be seen that our
method achieves better segmentation results mainly attributed to the powerful GP classification framework which explicitly
models the relations between pixels.

References
[1] David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of convergence for sparse variational gaussian process regression.

In International Conference on Machine Learning, pages 862–871. PMLR, 2019. 5
[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable

convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision, pages 801–818, 2018.
1

[3] Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan, Donglian Qi, and Hengshuang Zhao. FocalClick: Towards practical interactive
image segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1300–1309, 2022. 1, 6

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 248–255, 2009. 1

Image & GT Mask RITM (IoU 93.42%) FocusCut (IoU 77.61%) FocalClick (IoU 76.09%) GPCIS (IoU 94.03%)

Image & GT Mask RITM (IoU 84.81%) FocusCut (IoU 78.57%) FocalClick (IoU 79.36%) GPCIS (IoU 94.62%)

Figure S2. Visual comparisons of different competing methods on exemplar images from the GrabCut dataset.

[5] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Semantic contours from inverse detectors.

Image & GT Mask RITM (IoU 78.15%) FocusCut (IoU 54.44%) FocalClick (IoU 78.37%) GPCIS (IoU 96.60%)

Image & GT Mask RITM (IoU 92.68%) FocusCut (IoU 84.71%) FocalClick (IoU 95.20%) GPCIS (IoU 95.62%)

Figure S3. Visual comparisons of different competing methods on exemplar images from the Berkeley dataset.

In Proceedings of IEEE International Conference on Computer Vision, pages 991–998, 2011. 6
[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 770–778, 2016. 1, 6
[7] Andre G Journel and Charles J Huijbregts. Mining geostatistics. Academic Press London, 1976. 5
[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 1
[9] Zheng Lin, Zheng-Peng Duan, Zhao Zhang, Chun-Le Guo, and Ming-Ming Cheng. FocusCut: Diving into a focus view in interactive

segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2637–2646, 2022. 6
[10] Sabarinath Mahadevan, Paul Voigtlaender, and Bastian Leibe. Iteratively trained interactive segmentation. In British Machine Vision

Conference, 2018. 1
[11] Kevin McGuinness and Noel E O’connor. A comparative evaluation of interactive segmentation algorithms. Pattern Recognition,

43(2):434–444, 2010. 6
[12] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander Sorkine-Hornung. A benchmark

dataset and evaluation methodology for video object segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 724–732, 2016. 6

[13] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in Neural Information Processing
Systems, 20, 2007. 5

[14] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. GrabCut: Interactive foreground extraction using iterated graph cuts. ACM
Transactions on Graphics, 23(3):309–314, 2004. 6

[15] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton Konushin. f-BRS: Rethinking backpropagating refinement for interactive
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8623–8632, 2020. 1, 6

Image & GT Mask RITM (IoU 58.18%) FocusCut (IoU 65.65%) FocalClick (IoU 62.29%) GPCIS (IoU 71.38%)

Image & GT Mask RITM (IoU 97.65%) FocusCut (IoU 2.59%) FocalClick (IoU 95.45%) GPCIS (IoU 97.65%)

Figure S4. Visual comparisons of different competing methods on exemplar images from the SBD dataset.

[16] Konstantin Sofiiuk, Ilia A Petrov, and Anton Konushin. Reviving iterative training with mask guidance for interactive segmentation.
arXiv preprint arXiv:2102.06583, 2021. 1, 6

[17] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang
Wang, et al. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(10):3349–3364, 2020. 1, 6

[18] James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Deisenroth. Efficiently sampling functions
from Gaussian process posteriors. In International Conference on Machine Learning, pages 10292–10302. PMLR, 2020. 4, 5

[19] James T Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth. Pathwise conditioning of
Gaussian processes. Journal of Machine Learning Research, 22:105–1, 2021. 4, 5

Image & GT Mask RITM (IoU 84.75%) FocusCut (IoU 76.79%) FocalClick (IoU 60.09%) GPCIS (IoU 85.95%)

Image & GT Mask RITM (IoU 83.89%) FocusCut (IoU 28.25%) FocalClick (IoU 62.58%) GPCIS (IoU 91.93%)

Figure S5. Visual comparisons of different competing methods on exemplar images from the DAVIS dataset.

[20] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. SegFormer: Simple and efficient design for
semantic segmentation with transformers. Advances in Neural Information Processing Systems, 34:12077–12090, 2021. 1, 6

	. Implementation Details
	. Algorithm Flowchart
	. Derivations
	. KL Divergence in Eq. (8)
	. GP Posterior in Eqs. (9) (10)
	. Decoupled GP Posterior
	Double-Space Views of GP
	Pathwise Updates for Efficient Sampling of GP Posterior
	Derivation of Eq. (11)

	. More Experimental Results
	. Quantitative Results
	. Qualitative Results

