Learning Discriminative Representations for Skeleton Based Action Recognition

- Supplementary Material -

Huanyu Zhou ${ }^{1}$, Qingjie Liu ${ }^{1,2,3, *}$, Yunhong Wang ${ }^{1}$
${ }^{1}$ State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
${ }^{2}$ Zhongguancun Laboratory, ${ }^{3}$ Hangzhou Innovation Institute of Beihang University
\{zhysora, qingjie.liu, yhwang\}@buaa.edu.cn

1. More Details

1.1. Construction of Ambiguous groups

As discussed in the main paper, we define the ambiguous groups, which collect several related ambiguous actions to verify the performance of ambiguous samples. We first pick a class as an anchor class, for example, "writing". Then we gather the misclassified samples on "writing" and obtain the top- 3 actions with the highest frequency, like "reading", "typing on a keyboard" and "playing with phone". These 4 actions will be constructed as an ambiguous group. we randomly pick 60 anchor actions and constructed corresponding ambiguous groups from NTU-RGB+D 120 dataset.

The details of each ambiguous group are displayed on Tab. 5. From the description of the action names, we can find that actions in the same group are relatively similar to each other. This further demonstrate the rationality to constructing ambiguous groups.

1.2. Pseudo-code

To make our method easy to understand, we provide the PyTorch-like pseudo-code in Algorithm 1.

2. More Quantitative Results

2.1. Comparison with more SOTA models

We provide experimental comparisons with more recent SOTA models on NTU-RGB+D [8], NTU-RGB+D 120 [6], and NW-UCLA [11] datasets. The quantitative results are displayed in Table 1.

Due to the different testing configurations, we do not compare our model with them in the main paper. PoseC3D [4] and LST [13] utilize extra data to augment their performance. PoseC3D [4] takes 2D skeletons from highaccuracy estimators as the input and cooperates them with RGB frames. [13] we the pretrained transformer model

[^0]```
Algorithm 1 Pseudo-code in PyTorch-like style.
\# \(x, y: i n p u t\) of skeleton data and labels
\# blocks[i]: the i-th feature extraction block
\# fc_layer: fully-connected layer
\# fr_head: feature refinement head
\# model.params: all trainable parameters of the model
\# logits: probability scores predicted by the network
\# lambda[i]: the balanced hyper-parameter of stage i
\# w_cl: the balanced hyper-parameter for CL loss
for \(x, y\) in batch: \# load samples
 \# 1. obtain the hidden features for refinement
 refine_feats = []
 for i in 1...10:
 \(\mathrm{x}=\) blocks[i](x)
 \# save the multi-level features
 if i in \([1,5,8,10]:\)
 refine_feats.add(x.clone())
 \# 2. obtain the prediction of the network
 \(\mathrm{x}=\mathrm{x} \cdot \operatorname{mean}(1,2)\)
 \(\mathrm{x}=\mathrm{fc}\) _layer(x)
 logits \(=\) softmax \((x)\)
 \# 3. obtain the loss
 loss_cl \(=0\)
 \# sum up the CL loss for each stage: Eq.(1)
 for i in 1...4:
 loss_cl += rf_head(refine_feats, logits) * lambda[i]
 \# calculate the CE Loss
 loss_ce \(=\) cross_entropy_loss(logits, y)
 \# calculate the full learning objective function: Eq
 . (10)
 loss_full \(=\) loss_ce \(+w _c l\) * loss_cl
 \# 4. backpropagation \& update params
 loss_full.backward()
 update(model.params)
```

from CLIP [7] or BERT [3] to construct a language supervised training. InfoGCN [2] and HD-GCN [5] apply a multimodal representation of a skeleton for 6 model ensembles, while our results are based on 4 model ensembles. TCAGCN [12] obtain comparable results with our model but need nearly 3 times of parameters. As shown in Table 1, despite the unfair testing setting, our method still obtain competitive results on all datasets. These results further prove the effectiveness and generalizability of our method.

Table 1. Performance comparison of skeleton-based action recognition in top-1 accuracy (\%).

| Method | Publication | Extra Data | Mode | Params. | NTU RGB+D |  | NTU RGB+D 120 |  | NW-UCLA |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | X-View | X-Sub | X-Set |  |
| PoseC3D [4] | CVPR2022 | $\checkmark$ |  | 2.0 M | 94.1 | 97.1 | 86.9 | 90.3 |  |
| InfoGCN [2] | CVPR2022 | $\times$ | 6 ensemble | 1.6 M | 93.0 | 97.1 | 89.8 | 91.2 | 97.0 |
| HD-GCN [5] | Arxiv2022 | $\times$ | 6 ensemble | 1.7 M | 93.4 | 97.2 | 90.1 | 91.6 | 97.0 |
| LST [13] | Arxiv2022 | $\checkmark$ | 4 ensemble | - | 92.9 | 97.0 | 89.9 | 91.1 | 97.2 |
| TCA-GCN [12] | Arxiv2022 | $\times$ | 4 ensemble | 5.7 M | 92.8 | 97.0 | 89.4 | 90.8 | 97.0 |
| Ours |  | - | $\times$ | 4 ensemble | 2.0 M | 92.8 | 96.8 | 89.5 | 90.9 |

Table 2. Comparison of class-wise accuracy (\%) on NW-UCLA dataset with the joint input modality.

| Action Name | ST-GCN [14] | 2s-AGCN [9] | CTR-GCN [1] | Ours |
| :--- | :---: | :---: | :---: | :---: |
| pick up with one hand | 75.00 | 79.17 | 79.17 | $\mathbf{8 7 . 5 0}$ |
| pick up with two hands | $\mathbf{1 0 0 . 0 0}$ |
| drop trash | $\mathbf{1 0 0 . 0 0}$ |
| walk around | 91.84 | 89.80 | $\mathbf{9 3 . 8 8}$ | 89.80 |
| sit down | 97.87 | $\mathbf{1 0 0 . 0 0}$ | 97.87 | 97.87 |
| stand up | $\mathbf{1 0 0 . 0 0}$ | 95.74 | 97.87 | $\mathbf{1 0 0 . 0 0}$ |
| donning | $\mathbf{1 0 0 . 0 0}$ | $\mathbf{1 0 0 . 0 0}$ | 97.67 | $\mathbf{1 0 0 . 0 0}$ |
| doffing | 90.70 | 88.37 | $\mathbf{9 7 . 6 7}$ | 90.70 |
| throw | 91.49 | 91.49 | $\mathbf{9 5 . 7 4}$ | $\mathbf{9 5 . 7 4}$ |
| carry | $\mathbf{8 4 . 4 4}$ | 80.00 | 82.22 | 82.22 |
| Average | 93.10 | 92.46 | 94.18 | $\mathbf{9 4 . 4 0}$ |

### 2.2. Category Performance

Tables 3, 4 and 2 present the category performance comparisons on NTU-RGB+D [8], NTU-RGB+D 120 [6] and NW-UCLA [11] datasets, respectively. We apply the XSub setting on both NTU-RGB+D and NTU-RGB+D 120 datasets. All experiments are conducted with only the joint input modality. We compare our method with STGCN [14], 2s-AGCN [9] and CTR-GCN [1]. From the results, our method improves the other baselines on most categories.

## 3. More Qualitative Results

Fig. 1 shows the t-SNE [10] visualization of the feature space. As illustrated, 7 anchor actions are selected to construct the corresponding ambiguous group. As discussed in the main paper, each ambiguous group contains 4 classes, including an anchor class and three ambiguous classes. We compare our method with ST-GCN [14], 2s-AGCN [9], and CTR-GCN [1].

From the results, our model obtains a more discriminative representation resulting in a compact clustering. For example, at the first and third rows in Fig. 1, we find that instances of the class indicated by red are relatively closer to each other in the feature space compared to the baselines. This further confirms the effectiveness of our pro-
posed method.

Table 3. Comparison of class-wise accuracy (\%) on NTU-RGB+D 60 dataset under the X-Sub setting with the joint input modality.

| Action Name | ST-GCN [14] | 2s-AGCN [9] | CTR-GCN [1] | Ours |
| :---: | :---: | :---: | :---: | :---: |
| drink water | 83.21 | 85.77 | 82.85 | 85.04 |
| eat meal/snack | 69.82 | 70.91 | 70.55 | 74.55 |
| brushing teeth | 83.88 | 79.85 | 81.68 | 79.49 |
| brushing hair | 89.74 | 89.38 | 91.58 | 92.67 |
| drop | 85.45 | 89.09 | 89.09 | 84.36 |
| pickup | 97.09 | 98.55 | 97.45 | 98.91 |
| throw | 92.00 | 94.91 | 91.27 | 94.91 |
| sitting down | 95.97 | 96.70 | 96.70 | 97.07 |
| standing up | 97.80 | 98.53 | 98.17 | 98.53 |
| clapping | 83.15 | 79.12 | 84.98 | 88.28 |
| reading | 65.57 | 62.27 | 73.99 | 69.60 |
| writing | 56.62 | 60.29 | 56.62 | 59.19 |
| tear up paper | 91.51 | 88.56 | 90.77 | 94.83 |
| wear jacket | 96.73 | 98.18 | 98.18 | 98.18 |
| take off jacket | 98.55 | 98.19 | 97.83 | 98.55 |
| wear a shoe | 83.15 | 76.19 | 79.49 | 78.75 |
| take off a shoe | 73.72 | 80.29 | 75.55 | 77.74 |
| wear on glasses | 92.31 | 95.60 | 94.14 | 92.67 |
| take off glasses | 93.80 | 96.72 | 95.26 | 95.26 |
| put on a hat/cap | 95.22 | 94.85 | 94.49 | 96.32 |
| take off a hat/cap | 97.80 | 97.80 | 97.44 | 97.44 |
| cheer up | 93.80 | 93.43 | 92.34 | 93.80 |
| hand waving | 92.34 | 90.88 | 92.34 | 92.70 |
| kicking something | 92.39 | 94.20 | 94.20 | 97.46 |
| reach into pocket | 82.12 | 82.48 | 85.40 | 81.75 |
| hopping | 98.18 | 98.91 | 97.82 | 97.45 |
| jump up | 100.00 | 99.64 | 99.64 | 100.00 |
| make a phone call/answer phone | 86.55 | 86.91 | 88.73 | 87.27 |
| playing with phone/tablet | 66.18 | 70.55 | 69.09 | 73.82 |
| typing on a keyboard | 72.36 | 59.27 | 69.45 | 67.27 |
| pointing to something with finger | 83.33 | 85.51 | 83.70 | 84.42 |
| taking a selfie | 89.86 | 89.86 | 90.58 | 87.68 |
| check time | 86.59 | 87.68 | 88.41 | 89.13 |
| rub two hands together | 89.13 | 89.49 | 89.49 | 93.48 |
| nod head/bow | 96.38 | 96.01 | 96.01 | 96.74 |
| shake head | 95.27 | 96.00 | 94.55 | 95.27 |
| wipe face | 88.04 | 82.25 | 83.70 | 84.42 |
| salute | 92.75 | 92.75 | 93.48 | 94.93 |
| put the palms together | 93.48 | 93.12 | 93.48 | 91.67 |
| cross hands in front | 95.29 | 94.20 | 92.75 | 94.93 |
| sneeze/cough | 75.72 | 81.88 | 79.35 | 75.36 |
| staggering | 99.28 | 99.28 | 98.91 | 98.91 |
| falling | 98.18 | 98.55 | 98.91 | 98.91 |
| touch head | 81.16 | 82.97 | 81.52 | 82.97 |
| touch chest | 90.22 | 94.20 | 93.84 | 95.29 |
| touch back | 90.22 | 92.39 | 92.39 | 91.30 |
| touch neck | 86.96 | 83.33 | 88.04 | 89.13 |
| nausea or vomiting condition | 85.82 | 78.55 | 87.27 | 86.55 |
| use a fan /feeling warm | 91.64 | 91.64 | 95.64 | 94.55 |
| punching/slapping other person | 91.61 | 91.24 | 91.61 | 92.70 |
| kicking other person | 94.20 | 94.93 | 95.65 | 95.29 |
| pushing other person | 96.38 | 98.19 | 96.74 | 97.10 |
| pat on back of other person | 93.84 | 89.49 | 93.84 | 90.22 |
| point finger at the other person | 92.39 | 89.86 | 92.03 | 93.48 |
| hugging other person | 98.54 | 98.54 | 98.54 | 98.91 |
| giving something to other person | 95.29 | 94.20 | 93.48 | 93.84 |
| touch other person's pocket | 92.73 | 94.91 | 95.27 | 95.64 |
| handshaking | 95.65 | 96.01 | 95.29 | 95.65 |
| walking towards each other | 99.63 | 99.27 | 99.63 | 100.00 |
| walking apart from each other | 96.74 | 96.38 | 96.01 | 96.74 |
| Average | 89.40 | 89.36 | 89.96 | 90.33 |

Table 4. Comparison of class-wise accuracy (\%) on NTU-RGB+D 120 dataset under the X-Sub setting with the joint input modality.

|  | E | sis |  | \% |  | N |  |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| drink water | 83.58 | 85.04 | 87.59 | 82.85 | eat meal/snack | 68.36 | 69.09 | 70.18 | 72.36 |
| brushing teeth | 82.42 | 79.12 | 80.95 | 81.68 | brushing hair | 85.71 | 87.55 | 86.81 | 89.01 |
| drop | 84.00 | 82.91 | 86.55 | 90.91 | pickup | 99.27 | 98.91 | 98.55 | 98.55 |
| throw | 93.45 | 93.45 | 90.91 | 91.64 | sitting down | 96.70 | 95.97 | 96.70 | 94.87 |
| standing up | 97.80 | 97.80 | 97.80 | 97.44 | clapping | 74.73 | 85.71 | 81.68 | 83.52 |
| reading | 55.68 | 62.27 | 61.90 | 70.33 | writing | 59.93 | 56.99 | 56.99 | 55.51 |
| tear up paper | 90.04 | 90.41 | 88.93 | 88.19 | wear jacket | 96.73 | 97.82 | 97.45 | 97.82 |
| take off jacket | 97.83 | 97.83 | 97.83 | 98.55 | wear a shoe | 76.92 | 83.52 | 83.88 | 73.26 |
| take off a shoe | 74.82 | 75.55 | 75.91 | 81.75 | wear on glasses | 92.67 | 92.67 | 91.21 | 94.14 |
| take off glasses | 94.16 | 90.51 | 92.34 | 93.80 | put on a hat/cap | 94.49 | 95.59 | 94.49 | 96.32 |
| take off a hat/cap | 97.44 | 97.44 | 97.07 | 98.17 | cheer up | 91.97 | 95.62 | 94.53 | 92.70 |
| hand waving | 91.61 | 91.61 | 93.07 | 91.97 | kicking something | 94.20 | 92.75 | 95.29 | 94.93 |
| reach into pocket | 85.04 | 83.94 | 83.21 | 85.40 | hopping | 98.18 | 96.73 | 96.73 | 97.82 |
| jump up | 100.00 | 100.00 | 99.64 | 100.00 | make a phone call/answer phone | 88.73 | 87.64 | 85.09 | 89.09 |
| playing with phone/tablet | 52.36 | 50.55 | 61.82 | 57.82 | typing on a keyboard | 67.27 | 58.91 | 64.00 | 68.00 |
| pointing to something with finger | 81.88 | 76.81 | 78.26 | 75.36 | taking a selfie | 90.94 | 89.86 | 88.77 | 89.86 |
| check time | 91.30 | 88.77 | 91.30 | 89.13 | rub two hands together | 86.59 | 87.32 | 88.41 | 89.49 |
| nod head/bow | 96.38 | 95.29 | 95.65 | 97.83 | shake head | 92.73 | 91.64 | 94.55 | 96.00 |
| wipe face | 84.78 | 85.51 | 85.87 | 87.32 | salute | 92.39 | 92.39 | 90.58 | 93.48 |
| put the palms together | 92.39 | 91.67 | 89.86 | 93.84 | cross hands in front | 95.29 | 95.65 | 96.01 | 93.12 |
| sneeze/cough | 73.55 | 77.90 | 75.00 | 72.10 | staggering | 98.91 | 99.28 | 98.55 | 98.91 |
| falling | 98.18 | 98.55 | 97.09 | 98.55 | touch head | 81.16 | 78.62 | 83.33 | 82.61 |
| touch chest | 92.39 | 91.67 | 92.03 | 93.12 | touch back | 90.22 | 89.49 | 89.86 | 93.12 |
| touch neck | 88.41 | 90.58 | 87.68 | 89.13 | nausea or vomiting condition | 86.18 | 86.55 | 86.91 | 86.55 |
| use a fan /feeling warm | 91.27 | 92.00 | 91.27 | 94.55 | punching/slapping other person | 89.42 | 87.23 | 87.23 | 87.59 |
| kicking other person | 93.84 | 93.84 | 93.12 | 94.93 | pushing other person | 97.46 | 97.83 | 96.38 | 96.74 |
| pat on back of other person | 95.29 | 91.67 | 90.94 | 92.39 | point finger at the other person | 92.03 | 90.22 | 90.58 | 89.13 |
| hugging other person | 99.27 | 98.54 | 98.54 | 98.91 | giving something to other person | 89.13 | 90.58 | 86.23 | 90.58 |
| touch other person's pocket | 91.27 | 94.55 | 92.00 | 92.73 | handshaking | 96.38 | 95.29 | 95.29 | 96.38 |
| walking towards each other | 98.17 | 99.27 | 99.27 | 98.90 | walking apart from each other | 96.74 | 96.74 | 96.38 | 97.10 |
| put on headphone | 88.24 | 89.84 | 88.06 | 89.30 | take off headphone | 86.75 | 89.05 | 85.69 | 89.40 |
| shoot at the basket | 85.84 | 86.89 | 86.89 | 86.89 | bounce ball | 97.37 | 96.32 | 96.32 | 97.19 |
| tennis bat swing | 82.93 | 86.93 | 86.06 | 86.24 | juggling table tennis balls | 96.68 | 97.21 | 95.81 | 97.21 |
| hush | 76.27 | 77.66 | 76.44 | 79.76 | flick hair | 77.91 | 76.87 | 81.22 | 82.96 |
| thumb up | 64.70 | 59.13 | 64.70 | 67.13 | thumb down | 88.00 | 89.91 | 89.91 | 89.39 |
| make ok sign | 50.09 | 48.17 | 47.30 | 51.30 | make victory sign | 39.48 | 42.96 | 36.87 | 38.26 |
| staple book | 34.68 | 35.90 | 42.03 | 38.00 | counting money | 56.32 | 59.82 | 52.81 | 60.88 |
| cutting nails | 59.05 | 58.17 | 71.88 | 65.03 | cutting paper | 56.54 | 58.81 | 60.91 | 61.08 |
| snapping fingers | 65.16 | 68.99 | 68.82 | 71.08 | open bottle | 72.25 | 66.84 | 69.46 | 74.52 |
| sniff | 78.26 | 81.04 | 77.91 | 79.30 | squat down | 98.61 | 98.43 | 98.43 | 98.95 |
| toss a coin | 88.83 | 90.58 | 89.18 | 90.23 | fold paper | 69.22 | 68.17 | 67.13 | 66.78 |
| ball up paper | 76.17 | 76.35 | 70.09 | 77.04 | play magic cube | 63.81 | 61.89 | 65.03 | 64.16 |
| apply cream on face | 82.75 | 85.71 | 85.02 | 86.59 | apply cream on hand back | 70.03 | 72.30 | 72.13 | 77.87 |
| put on bag | 94.43 | 93.74 | 94.43 | 97.22 | take off bag | 94.44 | 94.79 | 93.92 | 94.27 |
| put something into a bag | 73.39 | 77.39 | 80.00 | 80.17 | take something out of a bag | 85.07 | 85.42 | 81.25 | 89.93 |
| open a box | 70.03 | 73.52 | 73.34 | 69.86 | move heavy objects | 93.49 | 94.72 | 94.19 | 95.60 |
| shake fist | 80.56 | 79.17 | 83.16 | 84.72 | throw up cap/hat | 80.80 | 86.21 | 85.51 | 84.47 |
| hands up | 95.30 | 96.34 | 96.34 | 96.86 | cross arms | 94.78 | 96.52 | 97.22 | 97.22 |
| arm circles | 99.13 | 99.13 | 98.78 | 99.65 | arm swings | 98.95 | 99.13 | 98.78 | 99.48 |
| running on the spot | 96.87 | 96.70 | 96.52 | 97.39 | butt kicks | 93.73 | 95.47 | 95.64 | 96.86 |
| cross toe touch | 96.69 | 93.90 | 94.43 | 97.21 | side kick | 94.08 | 95.47 | 94.08 | 95.47 |
| yawn | 66.96 | 73.04 | 66.43 | 72.17 | stretch oneself | 90.97 | 89.93 | 90.97 | 92.71 |
| blow nose | 61.22 | 61.74 | 67.13 | 61.91 | hit other person with something | 66.26 | 63.83 | 62.78 | 70.96 |
| wield knife towards other person | 66.49 | 65.10 | 74.65 | 71.18 | knock over other person | 89.24 | 92.36 | 88.89 | 91.32 |
| grab other person's stuff | 90.78 | 91.30 | 91.13 | 92.87 | shoot at other person with a gun | 75.48 | 74.26 | 79.65 | 78.43 |
| step on foot | 93.74 | 93.04 | 95.65 | 93.57 | high-five | 98.09 | 97.57 | 97.74 | 97.92 |
| cheers and drink | 98.43 | 99.30 | 99.30 | 98.43 | carry something with other person | 95.49 | 95.49 | 96.18 | 95.66 |
| take a photo of other person | 94.97 | 92.36 | 93.40 | 92.71 | follow other person | 96.18 | 94.44 | 93.75 | 95.49 |
| whisper in other person's ear | 92.00 | 92.70 | 92.70 | 92.17 | exchange things with other person | 88.35 | 91.30 | 92.70 | 92.52 |
| support somebody with hand | 91.48 | 91.48 | 92.52 | 91.83 | finger-guessing game | 96.70 | 97.05 | 95.83 | 96.70 |
| Average | 83.42 | 84.31 | 84.54 | 85.51 |  |  |  |  |  |

Table 5. Details of our selected ambiguous groups on NTU-RGB+D 120 dataset.














|  |
| :---: |










(b) 2 s - AGCN
(a) ST-GCN

(c) CTR-GCN

(d) Ours

Figure 1. T-SNE visualization [10] of the feature space for ambiguous groups on NTU RGB+D 120 dataset. The texts on the left describe the anchor action of the corresponding ambiguous group. Different colors indicate different classes.

## References

[1] Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying Deng, and Weiming Hu. Channel-wise topology refinement graph convolution for skeleton-based action recognition. In Proceedings of the IEEE International Conference on Computer Vision, pages 13359-13368, 2021. 2, 3, 4
[2] Hyung-gun Chi, Myoung Hoon Ha, Seunggeun Chi, Sang Wan Lee, Qixing Huang, and Karthik Ramani. Infogen: Representation learning for human skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2018620196, June 2022. 1, 2
[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171-4186. Association for Computational Linguistics, 2019. 1
[4] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai. Revisiting skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2969-2978, 2022. 1, 2
[5] Jungho Lee, Minhyeok Lee, Dogyoon Lee, and Sangyoon Lee. Hierarchically decomposed graph convolutional networks for skeleton-based action recognition. arXiv preprint arXiv:2208.10741, 2022. 1, 2
[6] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C Kot. Ntu rgb+ d 120: A largescale benchmark for 3 d human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10):2684-2701, 2019. 1, 2
[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748-8763. PMLR, 2021. 1
[8] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset for 3d human activity analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1010-1019, 2016. 1, 2
[9] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Twostream adaptive graph convolutional networks for skeletonbased action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 12026-12035, 2019. 2, 3, 4
[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(11), 2008. 2, 6
[11] Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and SongChun Zhu. Cross-view action modeling, learning and recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2649-2656, 2014. 1, 2
[12] Shengqin Wang, Yongji Zhang, Fenglin Wei, Kai Wang, Minghao Zhao, and Yu Jiang. Skeleton-based action recognition via temporal-channel aggregation. arXiv preprint arXiv:2205.15936, 2022. 1, 2
[13] Wangmeng Xiang, Chao Li, Yuxuan Zhou, Biao Wang, and Lei Zhang. Language supervised training for skeleton-based action recognition. arXiv preprint arXiv:2208.05318, 2022. 1,2
[14] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 7444-7452, 2018. 2, 3, 4


[^0]:    * Corresponding author

