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1. Overview

The supplementary materials we provide are organized
as follows:

* Supplementary Materials

* Code and Data

* Typical Data Examples

* Annotation Lists

* Supplementary Materials.pdf (this file)

In the following, we organize each section as follows:

¢ In Section 2, we introduce more archaeological knowl-
edge that guides our network design.

* In Section 3, we provide more details about data col-
lection and annotation.

¢ In Section 4, we describe the implementation details of
our network.

* In Section 5, we describe the detailed computation of
our loss function.

* In Section 6, we perform additional ablation experi-
ments on the hyper-parameter settings in the network.

* In Section 7, we compare the experimental results of
our proposed loss function with two other commonly
used loss functions.

* In Section 8, we provide more comparison results be-
tween SOTA methods and our network.

2. Archaeological Knowledge

Meaning. The Shang, Western Zhou, and Warring States
were the most prosperous times for bronze wares in Chinese
history. Therefore, the study of bronzes is of great signifi-
cance in archaeology, history, linguistics, and other aspects.
And bronze dating is an important part of bronze research.
Only on the basis of dating can bronze wares become effec-
tive historical materials.
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Roadmap. Bronze wares have been unearthed in the Han
dynasty, but the number is too small to study in depth. In
the Song dynasty, epigraphy became popular, and the study
of bronzes also began. Until the Qing dynasty, people paid
attention to the age of the bronzes, but the research was still
scattered and non-systematic. The real start of scientific re-
search on bronze dating was at the beginning of the 20th
century. The ”Standard Utensil Dating Method” was pro-
posed, that is, to first determine the era of a certain uten-
sil according to the content of the inscription, use it as a
standard utensil, and then infer the era of the utensils with
related or similar shapes and characteristics [3]. The pro-
posal of this method has laid a scientific foundation for the
dating of bronzes, and it has also been widely accepted by
scholars. Then, the shape and characteristics can be sum-
marized in a certain type of bronze ware, combined with
the unearthed pottery, and correspond to the underlying re-
lationship in the archaeological unit, the eras of new bronze
wares can be determined.

Methodology. The development of bronze wares has a
general process, and its shape and characteristics have a law
of evolution.

In terms of shape, it was mainly influenced by social pro-
ductivity, handicraft technology, and social thoughts at that
time. For example, a general development process of the
bronze ding foot is cone foot, column foot, and hoof foot.
The bronze ding with cone feet is a very typical feature of
the early Shang dynasty. The column foot was popular from
the late Shang dynasty to the mid and late Western Zhou dy-
nasty, while the hoof foot first appeared in the mid Western
Zhou dynasty, and became the main foot type during the
Spring and Autumn and Warring States.

In terms of characteristics, they also have certain era and
region features. For example, animal face patterns were
most popular in the late Shang dynasty and early Western
Zhou dynasty; the phoenix and bird pattern was more com-



mon in the mid Western Zhou dynasty; the swallowtail pat-
tern was only seen in the Xingan Oceania region in the late
Shang dynasty.

3. Data Collection and Annotation

We have collected all the available bronze ding data as
much as possible.

3.1. Statistics

Table 1 shows the number of images in each era in our
dataset and the number of images split into training, valida-
tion, and test sets. The imbalance is because bronze ware
was more popular as utensils and ritual vessels during the
Shang and Western Zhou dynasties. However, during the
Spring and Autumn and Warring States dynasties, bronze
wares were mostly used as utensils, and their role as rit-
ual vessels was greatly weakened. Funeral bronzes are no
longer popular as symbols of status in burials. In addition,
with the development of smelting technology and handi-
craft technology, utensils made of iron, lacquered wood,
and other materials gradually replaced bronze. Therefore,
the number of bronze dings in the Spring and Autumn and
Warring States dynasties was much smaller than that in the
Shang and Western Zhou dynasties.

Furthermore, Four characteristics appear in 1000+ im-
ages. Standing ear, cylindrical foot, and hoof-shaped foot
are very common as the key components, and the string pat-
tern is relatively simple, so there are many.

3.2. Data Annotation Tool

In addition to labeling the era and shape for each im-
age, we modify Labellmg [4] to annotate characteristics, as
shown in Figure 1. Before starting to label, it is necessary
to pre-define the categories according to the type of charac-
teristics in our dataset, with 96 types in total. We provide
categories lists for era, shape, and characteristics in the an-
notation list files.

3.3. Calculation of Information Gain

To quantify the information provided by the additional
annotations, we calculate the information gain of the shape
and characteristic annotations for era judgement, as shown
in Equation (1).

9(D,;A) = H(D) - H(D | A) (D

where H(D) = — Zfil ej log (e;) is the entropy of dataset
D.H(D | A) =Y\, eH(D | A = A;) is the conditional
entropy of annotation A on dataset D, and C and K are the
number of categories in D and categories of the additional
attribute annotation A. We assume that the data in D corre-
sponding to each category is uniformly distributed, thus the

Figure 1. Annotation tool we use to label characteristics.

entropy of dataset D is H(D) = log (C). The increased in-
formation gain indicates that the annotation provides more
significant.

4. Network Details

Table 2 shows the structure of each head in our net-
work. The size of the input image is 400x400x3. The
dynasty head in MGM outputs a 4-dim vector correspond-
ing to 4 dynasties and then applies sigmotd projection to
form the dynasty nodes of the AKG. The period head out-
puts an 11-dim vector corresponding to 11 periods and then
applies sigmoid and softmax projection to form the pe-
riod nodes of the AKG and computes the cross-entropy loss
to enhance the exclusive relation between the period nodes,
respectively. In KEM, the shape head outputs a 29-dim vec-
tor corresponding to 29 shapes and then applies sigmoid
and softmax projection to form the shape nodes of the
AKG and compute the focal loss. The characteristic head
outputs a 96-dim vector corresponding to 96 characteristics
and then applies sigmoid projection to form the character-
istic nodes of the AKG and computes the multi-label focal
loss.

We conducted experiments and show that adding soft-
max projection to the dynasty head and constraining it with
cross-entropy loss will lead to decreases in the dating per-
formance (2.04% OA on dynasty and 2.91% OA on pe-
riod). Therefore, we did not implement it in our proposed
network.

5. Focal-type Probabilistic Classification Loss

Follow the probabilistic classification loss in [1], we de-
scribe the details of our extended calculation process. Given
an input image x, the unnormalized era joint probability of
all era nodes concerning the era label assignment y, is com-
puted as:
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Table 1. Statistics for our dataset. We counted the specific number of samples in each era, as well as the number of samples in the training,
validation, and test set.

Shang

Western Zhou

Spring and Autumn

Warring States

Era Early Late Early Mid Late Early Mid Late Eally  Mid Late Total
Number 93 1012 852 428 279 302 193 217 87 78 149 3690
Split 37/9/47 404/101/507  340/85/427 171/42/215 111/27/141 120/30/152  77/19/97 86/21/110 34/8/45 31/7/40 59/14/76 | 1470/363/1857
Table 2. The structure of each head in our network. The size of the input image is 400400 x 3.
Part | OutputSize | Layer Information Part | OutputSize | Layer Information
backbone | 13 x 13 x 2048 ResNet50 backbone | 13 x 13 x 2048 ResNet50
convl 13 x 13 x 1024 | CONV-(N1024, K1, S1, PO), BN, ReLU convl 13 x 13 x 1024 | CONV-(N1024, K1, S1, P0), BN, ReLU
conv2 13 x 13 x 2048 | CONV-(N2048, K3, S1, P1), BN, ReLU conv2 13 x 13 x 2048 | CONV-(N2048, K3, S1, P1), BN, ReLU
1 x 1 x2048 average poolling 1 x 1 x 2048 average poolling
fcl 1024 BN, MLP-(N1024) fcl 1024 BN, MLP-(N1024)
fc2 512 BN, ReLU, MLP-(N512) fc2 512 BN, ReLU, MLP-(N512)
fc3 4 ReLU, MLP-(N4) c3 11 ReLU, MLP-(N11)
projection 4 Sigmoid projection 11 Sigmoid and Softmax
(a) Network architecture of dynasty head in MGM. (b) Network architecture of period head in MGM.
Part [ OutputSize | Layer Information Part [ OutputSize | Layer Information
backbone | 13 x 13 x 2048 ResNet50 backbone | 13 x 13 x 2048 ResNet50
convl 13 x 13 x 1024 | CONV-(N1024, K1, S1, P0), BN, ReLU convl 13 x 13 x 1024 | CONV-(N1024, K1, S1, PO), BN, ReLU
conv2 13 x 13 x 2048 | CONV-(N2048, K3, S1, P1), BN, ReLU conv2 13 x 13 x 2048 | CONV-(N2048, K3, S1, P1), BN, ReLU
1 x 1 x 2048 average poolling 1 x 1 x 2048 average poolling
fcl 1024 BN, MLP-(N1024) fcl 1024 BN, MLP-(N1024)
fc2 512 BN, ReLU, MLP-(N512) fc2 512 BN, ReLU, MLP-(N512)
fc3 29 ReLU, MLP-(N29) fc3 96 ReLU, MLP-(N96)
projection 29 Sigmoid and Softmax projection 96 Sigmoid

(c) Network architecture of shape head in KEM.

And, the unnormalized era-shape joint probability con-
cerning the era-shape label assignment y.s and the unnor-
malized era-characteristic joint probability concerning the
era-characteristic label assignment ye. are computed as:

n+m
Pes(yes|x): H ¢esi (jesivyesi) H djesi’j (yesivyeSj)
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where T.,, Zes;, and T.., are the sigmoid output of the
corresponding i-th era nodes, era-shape nodes, and era-
characteristic nodes, respectively; n, m, and k£ denote the
number of nodes for the eras, shapes, and characteristics.
Then, ¢, (fe“yei) = €% [yei:q’ and d}ei,] (yemyej) is
the constraint defined in the relation graph between any two
era labels in ye:

0, if violates era nodes assignment
wei,j(yemyej) = &)

1, otherwise

(d) Network architecture of characteristic head in KEM.
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Pec; (yecm yecj) are calculated in the same way.
The era joint probability is then normalized by Pre(ye |
PBZL&')X), where Z.(x) is the era partition function

that sums over all legal era assignments y, € S¢.:
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And the normalized era-shape partition function and era-
characteristic partition function are computed as:
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If input image x has the i-th era label, we obtain the era
marginal probability Pre(y., = 1 | x) of era label i by
summing over all legal ear assignments y,, that include 7,
=1



Table 3. Evaluation of the recall performance of all 4 coarse-grained dynasties and 11 fine-grained periods for each independent era

classification.
. Shang Western Zhou Spring and Autumn Warring States
Method w/ Attributes Early Late | Early Mid Late | Early Mid Late | Early Mid Late
ConvNeXt 89.36 79.39 | 74.24 86.98 80.85 | 75.66 61.86 7545 | 36.67 26.25 83.55
Part-based R-CNN | Bounding box | 53.19 68.64 | 8642 59.53 74.47 | 76.32 55.67 7545 | 11.11 27.50 60.00
MCL 74.47 7623 | 72.48 79.77 68.44 | 72.04 56.19 61.82 | 18.89 36.25 69.74
CrossX 59.57 84.12 | 62.53 8442 6525 | 81.25 4485 68.64 | 18.89 25.00 70.39
Single-Granularity BCNN 61.70 7791 | 63.00 8093 71.63 | 75.66 51.55 66.36 | 0.00 0.00 67.11
NTS-Net 7872 7199 | 7752 79.53 83.69 | 75.66 54.64 68.18 | 28.89 42.50 81.33
AM v 8298 8225 | 73.07 86.51 77.30 | 71.71 54.64 74.55 | 26.67 37.50 80.26
SPS 87.23 80.67 | 77.99 86.51 80.14 | 79.61 64.95 66.36 | 35.56 30.00 81.33
P2PNet 89.36 86.59 | 67.21 91.63 80.85 | 78.95 61.86 70.91 | 35.56 47.50 84.00
YourFL 30.87 87.10 85.79 85.53
89.36 77.51 | 7588 79.53 75.89 | 75.66 54.64 7091 | 31.11 37.50 80.60
81.77 84.93 88.30 82.50
Multi-Granularity C-HMCRN 8298 7929 | 7447 8000 77.30 | 7500 5773 73.64 | 40.00 4150 7333
HRN 86.64 82.38 90.53 82.89
8723 83.43 | 70.02 83.26 80.14 | 82.24 62.89 67.27 | 53.33 32.50 73.13
Ours v 86.64 89.53 90.81 87.58
87.23 8284 | 7775 88.84 86.52 | 7895 60.82 76.36 | 37.78 42.50 78.95

Given m training samples, D = {z!, 3.,y yl., g.,

gl gt} 1 = 1,...,m, where y!, y!, and y!, are the
ground-truth label vector of the era, era-shape combination,
and era-characteristic combination, respectively. And g €
{,....n% g\, € {1,...,n+m}, g\, € {1,...,n+k}
are the indices of the observed era, era-shape combina-
tion, and era-characteristic combination labels, respectively.
Subsequently, the era probabilistic classification loss L. (D)
is defined as follows:
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Then, because of the different importance of attributes,
we define the focal-type era-shape probabilistic classifica-
tion loss Les(D) and the era-shape-characteristic probabilis-
tic classification loss Le (D) as follows:

1 = I _ AN I 1!
m;<(1prc(ycglel|x )) ln(Prcs(yesgg”X ))) (10)

1m r AN U 1!
m;(aPrcs(yesgéSux ) InPrec(yh, ~16)) (1)

6. Analysis of Hyper-parameters

We conduct more experiments with different hyper-
parameters to further evaluate the impact of the decay fac-
tors a1, g and trade-off parameters 8, A employed in our
loss function, as shown in Table 4. The parameter settings
a1=2, as=3, 4=0.001, A=0.1 make the network achieve the
best period O A of 78.83%.

We adjust one parameter and keep other three parameters
to perform the experiments. The decay factors control the

degree of attribute learning while the model is learning the
main dating task. When «; increases from 1 to 2, the O A of
period dating increase from 77.32% to 78.83%. And when
ap increases from 1 to 3, the O A of period dating increase
from 78.02% to 78.83%. However, further increasing them
makes the performance decrease. Such results show that
appropriately reducing the learning of attributes can avoid
interference to the main task, but reducing the learning of
attributes too much will lead to a decline in the dating per-
formance. The change of trade-off parameters 3 and A from
0.0001 to 1 makes the performance of period dating fluctu-
ate in a range. It is worth mentioning that, our network
can robustly reach or outperform SOTA single-granularity
method P2PNet [5] 77.32% on most parameter settings.

Table 4. The period overall accuracy w.r.t hyper-parameters used
in our network. Bold indicates the best results, and underlined val-
ues are the second best result. When experimenting with different
values for each parameter, we consider other parameters to be op-
timal.

o [ 1 2 3 4 5
period OA | 7732 7883 7672 7705 7548
a1 2 3 4 5
period OA | 78.02 7807 7883 7721 7457
B 00001 0.001 001 0. 1
period OA | 77.16 7883 7672 7856 78.13
A [ 0.0001 0.001 001 0.1 1
period OA | 78.07 7689 7629 78.83 7732




7. Comparison of Loss Function

Before proposing our new loss function, we imple-
mented WCE loss and Focal loss on our network to learn
the eras and attributes information directly. However, they
got poor performance compared to our loss function (1.61%
OA on dynasty & 2.27% O A on period decreases for WCE
loss, and 3.61% OA on dynasty & 3.45% OA on period
decreases for Focal loss).

8. Additional Comparison Results

Our proposed network archives SOTA results on coarse
(dynasty) categories. Although few independent era clas-
sification results are worse than other approaches, we have
superb performance (ranked in the top two) on many inde-
pendent results. Other methods usually only perform well
on a few independent categories but poorly on others. We
also evaluate the recall performance of all 4 coarse-grained
dynasties and 11 fine-grained periods for each independent
era classification. And we achieve the best performance re-
call) for all 4 coarse-grained dynasties and 2 out of 11 fine-
grained periods for each independent era classification, as
shown in Table 3.

In Figure 2 and 3, we show 66 comparison results be-
tween our network and P2PNet [5] , C-HMCNN [2], and
HRN [1]. All methods correctly identify most of the typical
images of the Shang and Western Zhou dynasties, except
for P2PNet [5] which gives a wrong prediction for the first
row image of the late Shang dynasty. We believe that this is
due to the relatively sufficient sample size.

The Spring and Autumn and Warring States dynasties
have fewer samples, thus most of the wrong predictions are
concentrated in these two periods. In particular, for the third
row of images in the mid Spring and Autumn dynasty, the
first row of images in the mid of the Warring States dynasty,
and the fourth row of images in the mid Warring States dy-
nasty, all methods give wrong predictions. However, our
method makes the least false predictions for typical images
of these two harder-to-recognize dynasties.

Furthermore, for failure cases, our network misclassifies
them all to adjacent periods, in line with the development
law of bronze ding; however, other methods misclassify
some of them to relatively distant periods.
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Figure 2. The comparison results of the P2PNet [5] and C-HMCNN [2] on 66 typical examples from 4 dynasties and 11 periods. The green
box indicates success cases and the red box indicates failure cases.
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Figure 3. The comparison results of HRN [1] and our method on 66 typical examples from 4 dynasties and 11 periods. The green box

indicates success cases and the red box indicates failure cases.
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