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Figure A.1. We give some visualized region-adaptive masks. The
parameters refer to the values of [¢;, ¢;; 04, 05, A] in Eq. (3).

A. NeRF Degradation Simulator

Raw data collection. We collect raw sequences from
Vimeo90K [9] and LLFF-T [6]. In total, Vimeo90K con-
tains 64612 7-frame training clips with a 448 x 256 reso-
lution. Three frames (two reference views and one target
view) are selected from a raw sequence of Vimeo90K in a
random order. As described in Sec. 5.1, apart from the in-
herent displacements within the selected views, we add ran-
dom global offsets to the two reference views, largely en-
riching the variety of inter-viewpoint changes. On the other
hand, we also use the training split of the LLFF dataset,
which consists of 8 different forward-facing scenes with 20-
62 high-quality input views. Following previous work, we
drop the eighth view and use it for evaluation. To construct
a training pair from LLFF-T, we randomly select a frame
as the target view and then use the proposed view selection
algorithm (Sec. 4.3) to choose two reference views that are
most overlapped with the target view.
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Corresponding author

Settings 10% | 50% | 100% | PSNR (dB) | SSIM
LLFE-T 26.28 0.837
LLFF-T+ v 26.71 0.840
LLFF-T+ v 27.08 0.856
LLFF-T+ 4 27.39 0.867
TensoRF Base) [ - [ - | - [ 2670 [0838
Table A.1. Quantitative results of different training data sizes.

First, we train an IVM model only using the LLFF-T. Then, we
gradually increase the simulated pairs (10%, 50%, 100%) from
Vimeo90K [9] to train another three IVM models.

Hyper-parameter setup. In Eq. (1), the 2D Gaussian noise
map n is generated with a zero mean and a standard devi-
ation ranging from 0.01 to 0.05. The isotropic blur kernel
g has a size of 5 X 5. We employ a Gaussian blur ker-
nel to produce blurry contents by randomly selecting kernel
sizes (3-7), angles (0-180), and standard deviations (0.2-
1.2). Last, in order to obtain a region-adaptive blending map
M in Eq. (3), we use random means (¢;, ¢; € (—16,144)),
standard deviations (o; € (13,25),0; € (0,24)), and ori-
entation angles (A € (0,180)). Additionally, we visual-
ize some generated masks using different hyper-parameter
combinations ([¢;, ¢;; 04,0, A]) in Fig. A.1.

Training data size. We investigate the influence of train-
ing data size. Under the same training and testing setups,
we train several models using different training data sizes.
As illustrated in Table A.1, we can observe that the fi-
nal performance is positively correlated with the number
of training pairs. Also, we notice the IVM trained with
only LLFF-T data or additional few simulated pairs (10%
of the Vimeo90K) fails to enhance the TensoRF-rendered
results, i.e., there is no obvious improvement compared to
TensoRF [2]. This experiment demonstrates the importance
of sizable training pairs for training a NeRF restorer.
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Figure A.2. The detailed framework architecture of our proposed IVM.

B. Inter-viewpoint Mixer

In Sec. 4.2, we briefly describe the framework archi-
tecture of our inter-viewpoint mixer (IVM). Here we pro-
vide more details. As illustrated in Fig. A.2(a), there are
two convolutional modules (“Encoder 1/2”) to extract fea-
tures of the degraded view I and its two reference views
{I7, I} }, respectively. Then, we develop a hybrid recurrent
aggregation module that iteratively performs pixel-wise and
patch-wise fusion. At last, a reconstruction module is im-
plemented by a sequence of residual blocks (40 blocks) to
output the enhanced view I. The default channel size is 128.

Feature extraction. Given a rendered view [ and its two
reference views I ,, we aim to utilize the two encoders to
extract deep image features f and f] ,, respectively. As de-
tailed in Fig. A.2(a), the two encoders share an identical
structure. A convolutional layer is first adopted to convert
an RGB frame to a high-dimensional feature. Then we fur-
ther extract the deep image feature using 5 stacked residual
blocks followed by another convolution layer.

Hybrid recurrent aggregation. As depicted in
Fig. A.2(a), we employ three hybrid recurrent aggre-
gation blocks (termed “Hybrid-R1(2,3)”) to progressively
fuse the inter-viewpoint information from the image
features (f and f€1,2})‘ Next, we take the first iteration as
an example to illustrate our aggregation scheme.

Pixel-wise aggregation. As shown in Fig. A.2(b), we first
merge the target view feature f and one of the reference fea-
tures f{TL2 by channel concatenation. Then we use a con-
volutional layer to reduce the channel dimension and five
residual blocks followed by another convolutional layer to
obtain a fused deep feature. Later on, the fused feature and
the reference feature are further aggregated through a de-
formable convolution. And the other reference image fol-
lows the same processing pipeline. In this case, we finally
obtain two features after the pixel-wise aggregation.

Patch-wise aggregation. We adopt a window-based atten-
tion mechanism [5] to accomplish patch-wise aggregation.
In detail, the pixel-wisely fused features are first divided
into several 3D slices through a 3D patch partition layer.
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(b) Detailed structures of pixel-wise and patch-wise aggregation
Method IVM-0V | IVM-1V | IVM-2V | IVM-3V
PSNR (dB) 26.87 27.26 27.39 27.44
SSIM 0.846 0.862 0.867 0.869

Table C.2. Quantitative results of different numbers of reference
views.

Then, we obtain 3D tokens via a linear embedding oper-
ation and aggregate patch-wise information using a video
Swin transformer block. Finally, 3D patches are regrouped
into a 3D feature map.

In the next iteration, we split the 3D feature map into
two “reference” features f{rl’z} and repeat the pixel-wise
and patch-wise aggregation. Note that, the weights of pixel-
wise and patch-wise modules are shared across all iterations
to reduce the model complexity.

C. Additional Results

Number of reference views. By default, we perform inter-
viewpoint aggregation using two reference views (termed
IVM-2V). We train another three models (IVM-0V, IVM-
1V, and IVM-3V) adopting different numbers of reference
views. The results are shown in Table C.2. The model
without using reference views (IVM-0V) achieves the low-
est PSNR and SSIM values compared with other models.
Meanwhile, it is observed that the more reference views
used, the higher IVM performance, indicating the impor-
tance of utilizing high-quality reference views.

View selection. Fig. C.3 exhibits the selected views by our
algorithm in different NeRF scenes. We see that the pro-
posed view selection strategy is able to choose the most rel-
evant ones from freely captured views.

Qualitative results. Here, we provide more visual ex-
amples to adequately validate the effectiveness of our ap-
proach. As shown in Fig. C.4, Fig. C.5, Fig. C.6, Fig. C.7,
NeRFLiX consistently improves NeRF-rendered images
with clearer details and fewer artifacts for all NeRF models.
For example, NeRFLiX successfully recovers recognizable
characters, object textures, and more realistic reflectance ef-
fects, while effectively eliminating the rendering artifacts.
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Figure C.3. Visual comparison between two view selection methods.

Video demo. We also provide a video demo for a clear
visual comparison. First, we show some NeRF-rendered
views and the restored counterparts of NeRFLiX. Then, we
provide two video cases (one is from LLFF and the other
is an in-the-wild scene) to compare the rendered views of
TensoRF [2] and enhanced results of our NeRFLiX. It is
observed that NeRFLiX is capable of producing clearer im-

age details and removing the majority of the NeRF ren-
dering artifacts. Our project page is available at https:
//redrock303.github.io/nerflix/. Due to re-
strictions on the upload size of the supplementary materials,
we have uploaded this video demo to our project page.


https://redrock303.github.io/nerflix/
https://redrock303.github.io/nerflix/
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Figure C.4. Qualitative evaluation of the improvement over two SOTA NeRF models (TensoRF [2] and Plenoxels [3]) on LLFF [6] under
LLFF-P1.
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Figure C.5. Qualitative evaluation of the improvement over two SOTA NeRF models (RegNeRF [7] and NLF [1]) on LLFF [6] under
LLFF-P2. RegNeRF-V3(6,9) takes 3(6,9) input views for training.
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(a) Qualitative evaluation of the improvement over TensoRF [2] on Tanks and Temples [4].
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(b) Qualitative evaluation of the improvement over DIVeR [8] on Tanks and Temples [4].

Figure C.6. Qualitative evaluation of the improvement over two SOTA NeRF models on Tanks and Temples [4].
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Figure C.7. Qualitative evaluation of the improvement over two SOTA NeRF models (Plenoxels [3] and TensoRF [2]) on noisy LLFF
Synthetic.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Benjamin Attal, Jia-Bin Huang, Michael Zollhofer, Johannes
Kopf, and Changil Kim. Learning neural light fields with ray-
space embedding networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 5

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao
Su. Tensorf: Tensorial radiance fields. In European Confer-
ence on Computer Vision (ECCV),2022. 1, 3,4, 6,7

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501-5510, 2022. 4,7

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun.  Tanks and temples: Benchmarking large-scale
scene reconstruction. ACM Transactions on Graphics (ToG),
36(4):1-13,2017. 6

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202-3211, 2022. 2

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Transactions
on Graphics (TOG), 38(4):1-14,2019. 1,4, 5

Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi S. M. Sajjadi, Andreas Geiger, and Noha Radwan.
Regnerf: Regularizing neural radiance fields for view synthe-
sis from sparse inputs. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 5

Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David Forsyth. Diver: Real-time and accurate neural ra-
diance fields with deterministic integration for volume render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 16200-16209,
2022. 6

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. 1JCV, 127(8):1106-1125, 2019. 1



	. NeRF Degradation Simulator
	. Inter-viewpoint Mixer
	. Additional Results

