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Abstract

Expert demonstrations are a rich source of supervision
for training visual robotic manipulation policies, but imita-
tion learning methods often require either a large number
of demonstrations or expensive online expert supervision to
learn reactive closed-loop behaviors. In this work, we in-
troduce SPARTN (Synthetic Perturbations for Augmenting
Robot Trajectories via NeRF): a fully-offline data augmen-
tation scheme for improving robot policies that use eye-in-
hand cameras. Our approach leverages neural radiance
fields (NeRFs) to synthetically inject corrective noise into
visual demonstrations, using NeRFs to generate perturbed
viewpoints while simultaneously calculating the corrective
actions. This requires no additional expert supervision or
environment interaction, and distills the geometric informa-
tion in NeRFs into a real-time reactive RGB-only policy.
In a simulated 6-DoF visual grasping benchmark, SPARTN
improves success rates by 2.8× over imitation learning
without the corrective augmentations and even outperforms
some methods that use online supervision. It additionally
closes the gap between RGB-only and RGB-D success rates,
eliminating the previous need for depth sensors. In real-
world 6-DoF robotic grasping experiments from limited hu-
man demonstrations, our method improves absolute success
rates by 22.5% on average, including objects that are tra-
ditionally challenging for depth-based methods. See video
results at https://bland.website/spartn.

1. Introduction
Object grasping is a central problem in vision-based con-

trol and is fundamental to many robotic manipulation prob-
lems. While there has been significant progress in top-
down bin picking settings [21, 34], 6-DoF grasping of ar-
bitrary objects amidst clutter remains an open problem, and
is especially challenging for shiny or reflective objects that
are not visible to depth cameras. For example, the task of
grasping a wine glass from the stem shown in Figure 1 re-
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Figure 1. SPARTN is an offline data augmentation method for be-
havior cloning eye-in-hand visual policies. It simulates recovery
in a demonstration by using NeRFs to render high-fidelity obser-
vations (right) from noisy states, then generates corrective action
labels.

quires precise 6-DoF control (using full 3D translation and
3D rotation of the gripper) and closed-loop perception of
a transparent object. Traditional 6-DoF grasping pipelines
[8, 57] synthesize only one grasp pose and use a motion
planner to generate a collision-free trajectory to reach the
grasp [38,40,54,60]. However, the use of open-loop trajec-
tory execution prevents the system from using perceptual
feedback for reactive, precise grasping behavior. In this pa-
per, we study how to learn closed-loop policies for 6-DoF
object grasping from RGB images, which can be trained
with imitation or reinforcement learning methods [58].

Imitation learning from expert demonstrations is a sim-
ple and promising approach to this problem, but is known
to suffer from compounding errors [46]. As a result, com-
plex vision-based tasks can require online expert supervi-
sion [19, 46] or environment interaction [13, 44], both of
which are expensive and time-consuming to collect. On the
other hand, offline “feedback augmentation” methods [14,
22] can be effective at combating compounding errors, but
are severely limited in scope and thus far have not been ap-



plied to visual observations. Other recent works have found
that using eye-in-hand cameras mounted on a robot’s wrist
can significantly improve the performance of visuomotor
policies trained with imitation learning [17, 20,35], but still
do not address the underlying issue of compounding errors.
We develop an approach that helps address compounding
errors to improve vision-based policies, while building on
the success of eye-in-hand cameras.

To improve imitation learning for quasi-static tasks like
grasping, we propose a simple yet effective offline data aug-
mentation technique. For an eye-in-hand camera, the im-
ages in each demonstration trajectory form a collection of
views of the demonstration scene, which we use to train
neural radiance fields (NeRFs) [37] of each scene. Then, we
can augment the demonstration data with corrective feed-
back by injecting noise into the camera poses along the
demonstration and using the demonstration’s NeRF to ren-
der observations from the new camera pose. Because the
camera to end-effector transform is known, we can compute
corrective action labels for the newly rendered observations
by considering the action that would return the gripper to
the expert trajectory. The augmented data can be combined
with the original demonstrations to train a reactive, real-
time policy. Since the NeRFs are trained on the original
demonstrations, this method effectively “distills” the 3D in-
formation from each NeRF into the policy.

The main contribution of this work is a NeRF-based data
augmentation technique, called SPARTN (Synthetic Pertur-
bations for Augmenting Robot Trajectories via NeRF), that
improves behavior cloning for eye-in-hand visual grasping
policies. By leveraging view-synthesis methods like NeRF,
SPARTN extends the idea of corrective feedback augmen-
tation to the visual domain. The resulting approach can pro-
duce (i) reactive, (ii) real-time, and (iii) RGB-only policies
for 6-DoF grasping. The data augmentation is fully offline
and does not require additional effort from expert demon-
strators nor online environment interactions. We evaluate
SPARTN on 6-DoF robotic grasping tasks both in simula-
tion and in the real world. On a previously-proposed sim-
ulated 6-DoF grasping benchmark [58], the augmentation
from SPARTN improves grasp success rates by 2.8× com-
pared to training without SPARTN, and even outperforms
some methods that use expensive online supervision. On
eight challenging real-world grasping tasks with a Franka
Emika Panda robot, SPARTN improves the absolute aver-
age success rate by 22.5%.

2. Related Work
Robotic Grasping. Grasping is a long-studied topic in
robotics [50]; see the multitude of survey articles for a
complete review [2, 4, 26]. Most data-driven grasping sys-
tems focus on learning how to predict some parameterized
“grasp” (whether a full 6-DoF pose, 2-DoF table-top po-

sition, etc.), and leave intermediate motion generation to
be open-loop, handled either through motion planners or
simple heuristics, e.g. [12, 34, 42, 43, 52, 57]. Other works
have trained closed-loop grasping policies [21, 39, 53, 58],
and bring all the benefits of closed-loop policies: includ-
ing for example, the ability to avoid obstacles, to perform
precise grasping without precise calibration, and to react to
dynamic objects. Additionally, grasping policies are often
designed for top-down (2- or 3-DoF) grasping [21, 31, 43],
while 6-DoF grasping typically requires depth or 3D infor-
mation [39, 42, 53, 58]. And while depth sensors can pro-
vide richer geometric information about the scene and en-
able more precise grasping, it can also struggle on common
objects such as transparent cups or shiny silverware [62].
Our method trains a reactive 6-DoF grasping policy with
only RGB data. See Table 7 in the appendix for a summary
of the assumptions of the most related grasping works.

Imitation learning and data augmentation. Behavior
cloning is known to struggle with covariate shift: small er-
rors cause imitation policies to fall slightly off of the data
distribution and it is then difficult to correct the mistake
back onto the data manifold. DAgger [46] and its vari-
ants [16, 23, 36] mitigate this issue by obtaining expert cor-
rections throughout training. Alternatively, DART [29] in-
jects noise during expert demonstration collection, which
is especially effective with algorithmic experts but inter-
feres with human demonstration collection. Previous works
[14, 22] have injected noise into the low-dimensional sys-
tem state after data collection (in a fully offline manner),
but the visual observations are left out, limiting the help-
fulness of noise injection. Our method can be seen as a vi-
sual, fully-offline version of noise injection that does not re-
quire perturbing the expert during demonstration collection,
using NeRF to synthetically render perturbed states post-
hoc. Unlike standard image augmentations for policy learn-
ing [30, 61], our method uses NeRF to learn a 3D model
of the demonstration scene, which enables us to generate
high-fidelity novel views for data augmentation. In addi-
tion, while standard image augmentation approaches do not
modify the action labels, we leverage hand-eye coordination
to calculate corrective actions for augmented observations.

NeRF for Robotics. A number of recent works have in-
vestigated applications of NeRF and related methods in
robotics, including localization [63], navigation [1], dynam-
ics modeling [7, 9, 33], reinforcement learning [10], and
data generation for other learning-based methods [18, 62].
NeRF-Supervision [62], for example, generates pixel-level
correspondence to learn dense object descriptors, which are
useful for manipulation tasks. For grasping, various meth-
ods have leveraged NeRF [3, 18, 24] for open-loop grasp
synthesis. In contrast, our method uses NeRF offline to
augment data for grasping and distills a reactive, real-time,
RGB-only, closed-loop policy.



3. Methodology
We now introduce SPARTN, which augments an eye-in-

hand robot demonstration dataset using NeRF. We first re-
view preliminaries, then describe a method overview, fol-
lowed by details of training NeRFs and augmenting correc-
tive behavior.

3.1. Preliminaries

Imitation learning. In imitation learning, we assume ac-
cess to a dataset of N expert trajectories D = {τ}Ni=1,
where each trajectory consists of a sequence of state-action
pairs, τ = {(sk, ak)}Kk=0. In purely offline imitation learn-
ing, there exists no other primary data-collection assump-
tions other than this dataset D, i.e. no reward labels or on-
line interactions. A standard method for this offline setting
is behavior cloning (BC), which trains a policy πθ to mimic
the expert via supervised learning, by minimizing the ob-
jective L(θ) = E(s,a)∼D[ℓ

(
πθ(s), a

)
], where ℓ is some loss

function in the action space.
NeRF. Our method uses novel-view synthesis as a build-
ing block, for which we use Neural Radiance Fields [37].
For each scene, NeRF performs novel-view synthesis by
training a scene-specific neural radiance field FΘ from
a “training set” of posed images {(Ik, Tk)}, where each
Ik ∈ Rw×h×3, Tk ∈ SE(3). After FΘ is trained, through
volume rendering NeRF can render new views of a scene
from any requested pose, which can be summarized as
I = NeRF-Render(T ;FΘ) – in particular, this works best
“near” the training set of poses. Since we train many NeRFs
(one per demonstration), we use an accelerated implemen-
tation of NeRF (Instant-NeRF [41]).
Corrective Noise Augmentation. A simple method which
has been shown to improve the robustness of behavior-
cloned policies is to perform corrective noise augmenta-
tion [14, 22]. The idea is to take a nominal trajectory
τ = {(sk, ak)}Kk=0 and create a noise-distributed corrective
trajectory τ̃ = {(s̃k, ãk)}Kk=0, where each sampled state s̃k
is a noisy version of the measured state, i.e. s̃k ∼ sk + ϵ
and ϵ is sampled noise. To perform corrective feedback aug-
mentation, ãk is chosen such that it will return the state to
the nominal trajectory: given the true inverse dynamics f−1

of the environment, then ãk = f−1(s̃k, sk+1), or compute
the commanded control that can be tracked with a stabiliz-
ing controller to sk+1. An easy way to parameterize this
is by choosing the action space of the learned policy to be
the input to a stabilizing controller, as in [14, 22]. Note that
it is also common in the imitation and reinforcement learn-
ing literature to apply noise to inputs, which is typically
interpreted as a way to regularize the policy [27,30]. Mean-
while, in addition to potential regularization effects, the cor-
rective noise augmentation has been interpreted to specifi-
cally reduce compounding errors [14,22], but of course has
limits if the scale of perturbations is too large or in highly

Algorithm 1 SPARTN (Simplified overview)

Input: D = {τ}Ni=1 - expert demonstrations
Output: Augmented transition dataset D̃

1: D̃ ← {}
2: for τ = {(Ik, Tk, ak)}Kk=1 ∈ D do
3: F τ

Θ ← NeRF({(Ik, Tk)}Kk=1) # train NeRF
4: for k ∈ (0, 1, . . . ,K) do
5: for i = 1 : Naug do
6: ε← NoiseDist(SE(3))
7: T̃k ← Perturb(Tk, ε) # perturb pose
8: ãk ← CorrectAction(Tk, T̃k, ak)
9: Ĩk ← NeRF-Render(T̃k, F

τ
Θ)

10: D̃ ← D̃ ∪ {(Ĩk, T̃k, ãk)}

non-smooth dynamics regimes. A critical limitation of prior
works using corrective noise augmentation is that they have
not been applied to visual observations.

3.2. Overview: Visual Corrective Augmentation

Consider the case where an agent receives partial visual
observations I instead of the full state of the world, and also
receives direct proprioceptive state measurements, srobot, as
is commonly the case in robotics. In general, the correc-
tive augmentation of Sec. 3.1 requires obtaining the visual
observation Ĩk for each noisy state s̃k, which could be ex-
pensive or impossible in the actual environment.

An insight of this work is that for eye-in-hand robot
policies (where the visual observation comes from a cam-
era mounted on the wrist) in static scenes, we can readily
generate novel visual observations using novel-view synthe-
sis (i.e., NeRF) without further interactions in the environ-
ment. In this setting, a primary subset of the observations
are posed images (I, T ), together with some actions a.

The key intuition of our method can be grasped by con-
sidering how to perform visually corrective augmentation
via NeRF, as illustrated in Figure 2. Noisy states and cor-
rective actions (T̃k, ãk) can be generated for a trajectory
of posed observations and actions τ = {(Ik, Tk, ak)}Kk=0

(Sec. 3.1). The key pre-processing step is to train a
trajectory-specific NeRF F τ

Θ for each demonstration τ
(Sec. 3.3). These trajectory-specific NeRFs enable us to
render observations Ĩk for noisy states T̃k, completing the
augmentation process and resulting in visually corrective
transitions (Ĩk, T̃k, ãk) (Sec. 3.4). Algorithm 1 and Figure 3
overview this process.

3.3. Training NeRFs from Robot Demonstrations

SPARTN uses novel-view synthesis, in particular NeRF,
to generate observations Ĩk for noisy states without environ-
ment interaction. We train a NeRF F τ

Θ for each demonstra-
tion trajectory using the image observations (I1, · · · , IK) ∈
τ as the training set of views. After training F τ

Θ, we create



Figure 2. An illustration of how SPARTN creates augmentations from an original demonstration (in reality, this process is repeated for
every available demonstration). (i): The eye-in-hand demonstration contains posed images {(Ik, Tk)}Kk=1. (ii): We train a neural radiance
field (NeRF) of the demonstration scene on the posed images. (iii): We sample perturbations around each pose to simulate noise in
the demonstration, and calculate the corrective action (in magenta) that would stabilize the trajectory. (iv): We use the NeRF to render
observations for the perturbed poses. The end result is augmented image-action pairs for improving behavior cloning.

Figure 3. An overview of the SPARTN training process. A NeRF
is trained for each of the original demonstrations in D. We use
these NeRFs to generate visual corrective augmentations for each
demonstration and collect them in D̃. The policy πθ can be trained
on D and D̃ using standard behavior cloning methods.

observations Ĩk for perturbed robot states T̃k by rendering
the view from the perturbed camera pose using F τ

Θ.

An important detail is that the end-effector reference
frame used for control in demonstrations may differ from
the reference frame for the camera itself, but through stan-
dard eye-in-hand calibration we can transform all visual ob-
servations used for training and augmenting the NeRFs into
the cameras frame. Given a transform toT from

k which trans-
forms between two frames, we simply transform all NeRF-
poses to the world frame: WTC

k = WTE
k

ETC , where W is
the world frame, E is the end-effector frame which changes
at each step k, and C is the camera (NeRF) frame stati-
cally linked to the end-effector frame, and ETC is acquired
through hand-eye calibration.

COLMAP camera poses. Real-world calibration error
means that our camera-to-world transforms {WTC

k }Kk=1 are
noisy and we obtain higher-quality NeRFs by using cam-

era poses estimated by COLMAP [48, 49]. Up to noise and
a scale factor β, the only difference from the world frame
camera transforms is that COLMAP uses an arbitrary ref-
erence frame V ̸= W . We denote the COLMAP outputs
{V HC

k }Kk=1, using H instead of T because of the difference
in scale. We now introduce notation to separate the rotation
and translation components of a transform:

aT b :=
(
Rot

[
aT b

]
,Trans

[
aT b

])
(1)

Since we train the NeRFs on COLMAP’s camera poses, we
must convert perturbed camera poses WT C̃

k to COLMAP’s
frame in order to render the observations. In other words,
we must call NeRF-Render(V HC̃

k , F τ
Θ), where:

V HC̃
k =

(
Rot

[
V T C̃

k

]
, β Trans

[
V T C̃

k

])
(2)

V T C̃
k = V TW WT C̃

k . (3)

Both β and V TW can be estimated from the pairs
{(WTC

k , V HC
k )}Kk=1, as described in Appendix D.2.

Static Scene Assumption. An additional consideration for
robotic manipulation is that the standard NeRF formulation
assumes a static scene, while manipulation tasks such as
grasping will usually move objects in the scene. To address
this, we apply the NeRF training and augmentation process
to only the subsets of each demonstration trajectory where
no robot-object interaction occurs, instead of all timesteps.
For grasping, a simple and effective heuristic is to only ap-
ply SPARTN to the portions of each demonstration before
the expert closes the gripper.
Masking Out the Robot Gripper. The robot’s gripper
is often within the view of an eye-in-hand camera, which
breaks the static scene assumption. To address this, we



Figure 4. An illustration of how the gripper is inserted into the
result of the NeRF rendering process. Gray regions indicate pixels
being masked out by the binary gripper mask M ∈ {0, 1}w×h,
which denotes the pixels where the gripper is located in all frames.

leverage that the gripper is in the same location in each im-
age assuming the camera is rigidly mounted and the gripper
is open. Further, since NeRF is trained per-ray, we can sim-
ply mask pixels from training images. We construct a single
binary mask M ∈ {0, 1}w×h, where a 1 indicates gripper
pixels to mask out. Figure 4 shows how we use the same
mask to splice the gripper back into each NeRF rendering
output, Ĩk ← ¬M ⊙ Ĩk+M ⊙Ik, where⊙ is element-wise
multiplication broadcasted across the color channels.
NeRF Quality. Even when the training views from a
demonstration are suboptimal for NeRF training, SPARTN
benefits from the fact that our augmentation is local and
the perturbations ε are typically small, so we only need the
NeRF to generalize in a small region around the demon-
stration trajectory. As we will verify in the experiments,
SPARTN can be effective even with a limited number of
training views compared to other NeRF applications.

3.4. NeRFing Corrective Noise Augmentation

Given a visual augmentation model (Sec. 3.3), we can
adapt methods for corrective augmentation (Sec. 3.1) into
the visual domain. Our goal is to create noise-distributed
corrective transitions {(Ĩk, T̃k, ãk)}. First, we describe this
simply in the global frame. In order to sample from the
noise-distributed corrective trajectory, one can first apply
noise to the measured end-effector pose, T̃k := Tkε, where
ε ∼ NoiseDist(SE(3)) is a randomly sampled rotation and
translation. The high-fidelity perturbed image Ĩk corre-
sponding to T̃k can then be rendered using the trajectory-
specific NeRF F τ

Θ, without requiring access to the actual
environment. For the actions, the simplest case is when they
are inputs to a global-frame stabilizing Cartesian controller
controller [25], in which case ãk = ak = T̂k will provide
stabilization to the nominal trajectory, where T̂k is the de-
sired pose sent to the lower-level controller.
Corrective Relative Actions. As is common in prior
works, we observe better performance by parameteriz-
ing the learned policy as a relative rather than global ac-
tion. Consider the as-discussed global-frame version, with
(1) observations as a global-frame measured SE(3) end-
effector pose WTE

k , where W refers to world-frame, and
E to the end-effector frame at timestep k, and (2) action as

a global-frame desired SE(3) end-effector pose WT Ê
k . To

switch to a relative action space, we adjust the action to

ak = ET Ê
k = (WTE

k )−1 WT Ê
k = ETW

k
WT Ê

k . (4)

To additionally formulate the corrective noise augmentation
in the relative frame, we consider the SE(3)-noise ε as trans-
forming from the noisy end-effector frame to the measured
end-effector frame, i.e. ET Ẽ := ε. This accordingly ad-
justs the observation as WT Ẽ

k = WTE
k

ET Ẽ
k = WTE

k ε and
the relative action as:

ãk = ẼT Ê
k = (WTE

k
ET Ẽ

k )−1 WT Ê
k = ε−1 ak. (5)

Concisely, this amounts to post-pending ε to the measured
pose, and pre-prending ε−1 to the un-noised relative action.
Non-SE(3) actions. Thus far we have assumed that the ac-
tions a ∈ SE(3) only command desired pose transforms.
In practice, the action space may contain additional dimen-
sions, for example to open and close the gripper itself. The
SPARTN augmentation does not concern these aspects of
the action, so the corrective actions simply copy the origi-
nal action for non-SE(3) dimensions.
Summary. Figure 2 summarizes our augmentation proce-
dure: given a demonstration dataset D, we first train all
the neural radiance fields {F τ

Θ}τ∈D and save the weights
to disk. We then augment each transition in the original
dataset with Naug noisy corrective transitions produced us-
ing the process we described above, and save these transi-
tions into an augmented dataset D̃. Appendix Algorithm 2
describes the precise augmentation procedure in detail.

After the augmented dataset has been created, it can sim-
ply be combined with the original dataset to augment BC
training. Various sampling strategies are possible, but in our
experiments we simply construct mini-batches for BC train-
ing by sampling from the original and augmented datasets
with equal probability.

4. Simulation Experiments
We evaluate SPARTN and related approaches in the sim-

ulated 6-DoF grasping benchmark first introduced in [58],
which features a simulated Franka Emika Panda arm with
a parallel-jaw gripper. Objects are placed on a table and
must be lifted above a height threshold in a successful grasp.
Policies receive either RGB, RGBD, or point cloud observa-
tions from a wrist camera, and control the gripper by com-
manding relative pose changes in 6-DoF end-effector space.

4.1. Data Collection and Evaluation Protocol

We follow the training and evaluation procedure
from [58]. The training dataset includes 2,500 demonstra-
tions of grasping 1,500 ShapeNet [6] objects. Demonstra-
tions are up to 20 timesteps and are generated by trajectory



Figure 5. Example tasks in the simulated 6-DoF grasping bench-
mark, first introduced in [58]. There are ∼ 1,500 ShapeNet ob-
jects in training demonstrations, and held out YCB objects for
evaluation. A camera mounted to the Franka Panda robot’s arm
provides observations, and the policy controls the 6-DoF end-
effector pose.

Supervision Method Input YCB SR(%) SN SR(%)

Offline

BC RGB 28.9± 2.4 57.4± 0.2

DART†
RGB 51.2± 3.2 57.8± 2.2

RGBD 46 .3 45 .3
Point cloud 65 .6 73 .6

HA RGB 29.7± 2.4 57.5± 0.8
SPARTN (ours) RGB 74.7± 2.4 66.9± 1.6

Online* DAgger
RGB 52 .3 52 .1

RGBD 67 .1 60 .4
Point cloud 77 .2 75 .8

GA-DDPG Point cloud 88 .2 91 .3

Table 1. Grasping success rates (SR) on held-out objects from
YCB [5] or ShapeNet (SN) [6] in a simulated 6-DoF grasping
benchmark [58]. We bold the best offline RGB-only results,
though we include online and non-RGB methods for comparison.
Online* requires additional environment interactions unlike Of-
fline. DART† requires a special demonstration collection setup.
SPARTN outperforms other offline RGB-only methods, while RL
(GA-DDPG) performs best overall while requiring millions of in-
teractions. We calculate average success rates and standard error
over 4 random seeds. Italicized success rates were reported in
prior work1 [58].

optimization to precomputed grasps from the ACRONYM
dataset [11]. Policies are evaluated on grasping held-out ob-
jects from the YCB [5] or ShapeNet datasets. Though it is
more “out of distribution” relative to the training objects,
the YCB evaluation is more realistic for tabletop grasping
scenarios (ShapeNet includes a wide variety of objects, such
as airplanes and bicycles). Each held-out object is evaluated
ten times, each with a different initial robot configuration
and object’s initial pose.

4.2. Comparisons

We compare SPARTN against other approaches ranging
from simple behavior cloning to online-supervised imita-
tion and reinforcement learning:

1Note that the “BC” results in [58] actually use DART.

Method Aug qty YCB SR(%)
DART — 51.2± 3.2

SPARTN Equal transitions 42.0± 2.3
Equal demos 74.7± 2.4

Table 2. Comparing SPARTN to DART when controlling for an
equal number of augmented transitions or an equal number of ex-
pert demos. This shows that SPARTN benefits from cheaply gen-
erating more transitions without having to query the expert.

Policy Input Augmentation YCB SR(%)
Image None 28.9± 2.4

Image + Robot state None 25.6± 0.5
Image + Robot state SPARTN(−Image) 1.7± 0.3
Image + Robot state SPARTN 75.6± 2.4

Table 3. If we give (robot) state as input to the policy, we can ab-
late SPARTN by only augmenting the state and action and not the
image: SPARTN(−Image). This breaks the correct image-action
correspondence and performs poorly relative to full SPARTN.

Behavior Cloning (BC): Trains policies via supervised
learning on the demonstration dataset.
DART [29]: Introduces a modified demonstration setup
where a continuous Gaussian noise is injected into the
robot’s state during the expert demonstration, then trains
policies on the modified demonstrations with BC.
Homography Augmentation (HA): A simplification of
SPARTN where perturbations can be 3D rotations, but not
translations, of the camera. For pure rotation, we can cal-
culate the homography transform for rendering the rotated
view without NeRF. Augmented actions are computed sim-
ilarly to SPARTN.
DAgger [46]: An online-supervised method where a policy
is first trained using BC on offline demos, and then the ex-
pert provides action labels for states from the policy’s roll-
outs throughout further policy training.
GA-DDPG [58]: Jointly trains policies via BC and fine-
tunes them with reinforcement learning (DDPG [51]).

Of the methods considered, DAgger and GA-DDPG re-
quire online environment interaction and supervision from
an expert or reward function, respectively. The other meth-
ods, including SPARTN, train only on pre-collected demon-
stration datasets. Since the DART data collection setup
noisily perturbs the robot as the expert demonstrates, DART
can interfere with human expert demonstration, though this
challenge does not arise here with our simulated expert.

Training details. SPARTN follows the BC (RGB) hy-
perparameters of [58], where policies consist of a ResNet-
18 [15] image encoder followed by an MLP. Appendix C.1
describes the complete training details.

4.3. Results

Table 1 shows grasping success rates on held-out objects
from either the YCB or ShapeNet (SN) datasets. SPARTN
significantly outperforms the other two offline-supervised



Figure 6. Real-world grasping environments. In each environ-
ment, the task is to grasp the labeled target object in a particular
way. The target objects have various geometric shapes and exhibit
a diverse range of characteristics, including reflectiveness, trans-
parency, and radial symmetry.

RGB approaches. Since DART injects noise during expert
collection, the amount of augmentation is limited by the
number of demonstrations the expert can collect. Mean-
while, SPARTN can cheaply generate an arbitrary number
of augmented examples on top of the existing demonstra-
tion dataset, leading to more data diversity without any ad-
ditional effort from the expert.

SPARTN is especially beneficial on YCB, which con-
tains the more realistic objects. It outperforms DAgger
(RGB) on YCB, perhaps because DAgger’s nonstationary
data distribution presents a more challenging learning prob-
lem. SPARTN is also comparable to DAgger (Point cloud)
here, which significantly closes the gap between RGB-only
and the best depth-based methods.
Controlling transition vs demo quantity. For the same
number of expert demonstrations, SPARTN generates many
more augmented transitions than DART since it does not
need to query the expert. Table 2 shows that if we limit
SPARTN to providing an equal number of augmented tran-
sitions as DART, the relative improvement vanishes. As
expected, the advantage of SPARTN is in cheaply generat-
ing many augmentations, but does not provide more benefit
than DART per-transition.
Augmenting state without image. SPARTN generates
augmentations by (1) perturbing the robot state, (2) us-
ing NeRF to render the image observation from the new
state, and (3) computing the corrective action. To test the
importance of the NeRF component, we ran a version of
our method called SPARTN(−Image) where we ablate only
(2). Table 3 shows that this seriously degrades perfor-
mance, since it breaks the proper image-action correspon-
dence, while robot state alone is insufficient to solve the
task.

5. Real-World Experiments

The simulation benchmark results show that SPARTN
can improve grasping generalization in imitation learning

Target Object # Demos BC SR(%) SPARTN SR(%)
Banana 14 55 75

Thin box 20 35 65
Steel water bottle 15 20 40

Wine glass 25 70 90
Lubriderm bottle 17 25 60
White tape roll 15 40 45

Tupperware 20 40 75
Fork 20 25 40

Average -- 38.75 61.25

Table 4. Success rates (SR) of behavior cloning (BC) and SPARTN
6-DoF grasping policies on a suite of eight real-world target ob-
jects. SPARTN outperforms BC in every environment, achieving
an average absolute performance boost of 22.5%. Each success
rate is computed over 20 trials.

without online supervision. Here, we verify that SPARTN
can enable real-world robotic grasping of challenging ob-
jects from limited human demonstration. See the website
for video results.

5.1. Experimental details

Robot setup. The robotic manipulator is a Franka Emika
Panda robot arm with a wrist-mounted consumer grade we-
bcam. Policies take images of size 256 × 256 as input and
output a 6-DoF action representing the desired change in
end-effector position and orientation, as well as a binary
open/close gripper action. We use a Cartesian impedance
controller to command the pose changes at a frequency of 4
Hz. We task the robot to grasp a target object in eight dif-
ferent environments depicted in Figure 6. The target objects
include natural shapes that are common in the real world
and exhibit a diverse range of attributes, such as reflective-
ness, transparency, and radial symmetry.
Comparisons and Evaluation. In each environment, we
collect a small number of expert grasping demonstrations
with a virtual reality controller. Because DART is difficult
to use with human demonstration, we compare SPARTN to
a vanilla BC policy on the same set of demonstrations. Poli-
cies are evaluated with the same objects seen in the demon-
strations. Initial object and robot configurations are ran-
domized during both data collection and evaluation. Ap-
pendix D describes training details for each method.

5.2. Results

Table 4 shows grasping success rates in the eight real-
world environments. Quantitatively, SPARTN policies out-
perform the baseline BC policies across the board, on aver-
age achieving an absolute 22.5% increase in success rate.

Figure 7 shows qualitative differences in performance
between the BC and SPARTN policies. SPARTN generally
exhibits more reactive behaviors than the baseline policy: it
navigates towards the target object better while occasionally
avoiding obstacles, executes actions with greater precision,



Figure 7. Sample real-world policy rollouts illustrating how
SPARTN succeeds (green) in cases where BC fails (red). Top
left: While BC fails to reach the steel bottle, SPARTN success-
fully reaches and grasps it. Top right: While BC collides into the
orange bottle (a distractor object), SPARTN takes a more rounded
path to avoid it before grasping the white Lubriderm bottle. Bot-
tom left: BC fails to recover after a missed grasp, while SPARTN
successfully reattempts the grasp after failing the first time. Bot-
tom right: SPARTN operates with higher precision than BC and
successfully completes a difficult fork grasping task.

and even reattempts the grasp more successfully after an
initial miss. In some cases, the differences are stark: for in-
stance, SPARTN may successfully move toward and grasp
the target object while the baseline fails to even reach it. We
present further analysis of policy rollouts in Appendix D.4,
showing how SPARTN qualitatively performs better than
BC even in cases where both methods fail to grasp the target
object. The website’s videos of real-world policy rollouts il-
lustrate all of these differences, revealing that SPARTN in-
duces important reactive closed-loop behaviors that enable
the manipulator to successfully execute grasps in the real
world.
Object Generalization. We additionally evaluate whether
SPARTN enables greater generalization to held-out target
objects outside the distribution of objects seen at training
time. We train a SPARTN policy and BC policy on a train-
ing set consisting of 5 grasping demonstrations for each of
20 target objects (Figure 8, left), and then evaluate each pol-
icy against 5 held-out test objects (Figure 8, middle). The
results, shown in Table 5, indicate that SPARTN improves
object generalization in most cases, as the corrective aug-
mentations enhance the policy’s robustness.

6. Conclusion
We introduce SPARTN, which augments eye-in-hand

demonstrations with perturbed visual observations and cor-
rective actions. Our augmentation leverages novel-view
synthesis, in particular NeRF, to produce these augmenta-
tions during training-time. SPARTN can improve behavior
cloning training of robust, real-time, and closed-loop 6-DoF

Figure 8. Objects used for the real-world object generalization ex-
periment. Given a training set of grasping demonstrations with 20
objects (left), we evaluate policies against 5 held-out test objects
(middle). All demonstrations and evaluations are completed on a
tabletop with randomly positioned distractor objects (right).

Unseen Test Object BC SR (%) SPARTN SR (%)
Eggplant 45 50

White ice cream 60 50
Brown milk carton 35 85

Green grapes 30 55
Pink cup cake 15 50

Average 37 58

Table 5. Real-world object generalization results. For grasping
held-out target objects, SPARTN outperforms BC by 21% (abso-
lute) on average. Each success rate is computed over 20 trials.

visual control policies. We show that SPARTN-trained poli-
cies outperform other offline-supervised methods in a sim-
ulated 6-DoF grasping generalization benchmark. Our poli-
cies can also perform on par with imitation methods that re-
quire depth information and online supervision. We verify
that SPARTN can train policies to grasp a variety of objects
in the real world from limited human demonstrations.

Despite its strong performance, SPARTN also has some
limitations. First, SPARTN is limited to tasks with static
scenes like grasping: extending to a broader set of manip-
ulation tasks would require effective view synthesis for dy-
namic scenes. Second, training a neural radiance field for
every demonstration before training is computationally ex-
pensive, a limitation that may be mitigated through amor-
tized NeRF models [55, 59, 64]. Finally, the noise distri-
bution must be tuned for a given platform, e.g. it is tuned
separately for the simulated and real experiments. An in-
teresting direction for future work is to use policy actions
to generate the noise, which would result in a fully offline
variant of DAgger [46] that uses NeRF as a simulator.
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A. Full Algorithm

Algorithm 2 SPARTN: Corrective Augmentation via NeRF

Input: D = {τ}Ni=1 - expert demonstrations
Input: ETC - Transform between camera and end-effector
Input: M ∈ {0, 1}w×h - mask for robot gripper
Output: Augmented transition dataset D̃

1: D̃ ← {}
2: for τ = {(Ik, WTE

k ), (ET Ê
k )}Kk=1 ∈ D do

3: # EE pose→ camera pose
4: WTC

k ← WTE
k

ETC , for k = 0, · · · ,K
5: {V TC

k }Kk=1 ← COLMAP(I0, · · · , IK)
6: β ← SOLVE(Eq. 8) # Estimate β
7: V TW

k = V TC
k (WTC

k )−1, for k = 0, · · · ,K
8: # train NeRF
9: F τ

Θ ← NeRF({(Ik, V TC
k )}Kk=1,M)

10: for k ∈ (0, 1, . . . ,K) do
11: for i = 1 : Naug do
12: ε← NoiseDist(SE(3))
13: WT Ẽ

k ← WTE
k ε # perturbed end-effector pose

14: ẼT Ê
k ← ε−1 ET Ê

k # corrective relative action
15: WT C̃

k ← WT Ẽ
k

ETC # perturbed camera pose
16: V T C̃

k ← V TW
k

WT C̃
k

17: Ĩk ← NeRF-Render(V T C̃
k ;F τ

Θ)
18: # splice gripper into rendered image
19: Ĩk ← ¬M ⊙ Ĩk +M ⊙ Ik
20: D̃ ← D̃ ∪ {(Ĩk, WT Ẽ

k ), (ẼT Ê
k )}

B. Sample Perturbed Observations
As described in the main text, image observations Ĩ for

perturbed camera poses are rendered via novel-view synthe-
sis techniques, in particular NeRF. The section “Example
NeRF renders from augmented poses” in the website shows
videos of the rendering output for both simulation and real-
world augmentation.

C. Simulation Details
C.1. Training for Simulation Experiments

We train all of our RGB policies (SPARTN, DART, and
HA) closely following the architectural and optimization
hyperparameters of [58]. The image encoder is a ResNet-
18 [15] pretrained on ImageNet [47], followed by a 3-layer
MLP with 512 hidden units each and ReLU activations. The
MLP outputs the predicted action as a 6-D vector of pre-
dicted translations and Euler angles. The final layer has
a tanh activation to scale the output between [−1, 1], then
each dimension is scaled to match the environment’s action
bounds.

Method Image aug. YCB SR(%)

BC Without 25.3± 1.6
With 28.9± 2.4

DART Without 51.2± 3.2
With 48.6± 2.8

HA Without 23.9± 4.0
With 29.7± 2.4

SPARTN Without 68.3± 3.6
With 74.7± 2.4

Table 6. Ablating the effect of standard image augmentation on
each method for RGB policies. Average success rates and standard
errors are calculated over four seeds.

For behavior cloning, we use the same 3D point-
matching loss as [58]. We optimize the objective using
the Adam optimizer with batch size 100 for 100, 000 steps.
We train only the MLP (and not the pre-trained ResNet) for
the first 20, 000 steps, since “freeze-then-train” fine-tuning
techniques have been shown to be more robust [28]. After
20, 000 steps, the ResNet is unfrozen and the entire network
is trained as usual.

We also apply standard image augmentations (random
crop and color jitter) during training for all RGB-based
methods. We ablate the effect of these image augmentations
in Table 6. The results show that the image augmentations
do modestly improve the performance of most methods, but
do not change the relative ordering of each method (BC vs
DART vs HA vs SPARTN).

C.2. SPARTN Details

We use Instant-NGP [41] to train a NeRF for each of the
2,500 demonstration scenes. We train each NeRF for 3,500
steps, which takes 30 seconds on an NVIDIA GeFORCE
RTX 2080 Ti. To reduce total training time, we train the
NeRFs in parallel: with 4 GPUs, we can train all 2,500
NeRFs in∼ 7 hours. Because camera calibration is exact in
simulation, we use the world-frame camera poses given by
calibration instead of COLMAP to train NeRF.

We then create Naug = 100 augmented transitions from
each original transition and save the augmented dataset to
disk before BC training. To sample the perturbations ε ∼
NoiseDist(SE(3)), we parameterize the rotations in terms
of Euler angles (ϕ, θ, φ) and uniformly sample both rotation
and translation parameters:

(ϕ, θ, φ), (tx, ty, tz) ∼ U(−α, α),U(−β, β) (6)
ε := (R(ϕ, θ, φ), (tx, ty, tz)) (7)

In simulation, we set α = 0.2 radians and β = 3 mm.
Following the DART hyperparameters in [58], we only aug-
ment timesteps 5− 13 of each demonstration. Appendix B
contains samples of SPARTN’s perturbed observations ren-
dered via NeRF.



D. Real-World Details
D.1. Policy Training

For both BC and SPARTN, the image encoder for each
policy is a four-layer convolutional network followed by
two feedforward layers, and uses batch normalization and
ReLU activation functions. The image embedding is fed
into a three-layer ReLU MLP policy head, which outputs
the predicted action. We train the policy from scratch with
mean squared error, using Adam with learning rate 5×10−4

and a batch size of 64. No image augmentations like ran-
dom crop are applied.

D.2. COLMAP and NeRF Training

In the real world, we train our NeRF using cam-
era poses {V HC

k }Kk=1 estimated by COLMAP [48, 49].
From the camera calibration, we also have pose transforms
{WTC

k }Kk=1 which are too noisy to train a good NeRF from,
but will allow us to convert between world and COLMAP
frames. Conversion is necessary because we want to ren-
der from perturbed camera poses WT C̃ , but we must call
NeRF-Render using the transform V HC̃ (COLMAP’s ref-
erence frame) instead. From Eq. 2, we can do this conver-
sion if we have the transform V TW and the scale factor β
which distinguishes T and H .

We can estimate both quantities using the (WTC
k , V HC

k )
pairs in each demonstration. Recalling that aT b =
(bT a)−1, we have for any j ̸= k:

β Trans
[
CTW

j
WTC

k

]
= Trans

[
CHV

j
V HC

k

]
(8)

This leads to an overconstrained linear system in one un-
known β, which can be solved with linear regression. After
solving for β, we can rescale from H → T :

V TC
k :=

(
Rot

[
CHV

k

]
, (1/β) Trans

[
CHV

k

])
(9)

Now solving for V TW is simple:

V TW
k = V TC

k (WTC
k )−1. (10)

In theory, V TW is constant for all k, but in practice there
is noise from both COLMAP and the real-world pose esti-
mates, so we simply compute V TW

k separately for each k.

D.3. SPARTN Details

To improve NeRF quality for SPARTN, we program the
robot to collect a few images of the scene from a fixed set
of poses before the start of each demonstration. This auto-
matic process is only used to improve COLMAP’s pose es-
timation and the subsequent NeRF training. For SPARTN,
we generate Naug = 50 augmented transitions from each
original transition in the demonstrations. We sample per-
turbations ϵ according to Eq. 6 with α = 0.05 radians and

Figure 9. Sample real-world policy rollouts illustrating cases
where both BC and SPARTN policies fail. Top left: BC fails
to reach the thin box, while SPARTN successfully reaches it and
nearly completes the grasp. Top right: While BC completely
misses the white tape roll, SPARTN makes contact but fails to
grasp it. Bottom left: BC fails to reach the steel water bottle,
while SPARTN contacts it but fails to grasp it. Bottom right:
BC reaches the Lubriderm bottle over but knocks it over before
grasping it, while SPARTN nearly completes the grasp as the bot-
tle barely slips away from the robot’s fingers.

β = 0.4 mm. The website shows sample SPARTN obser-
vations rendered by NeRF. Aside from using the augmented
dataset, SPARTN policies are trained using the same BC
architecture and training hyperparameters described in Ap-
pendix D.1.

D.4. Additional Qualitative Analysis

Figure 9 shows sample evaluation trials where both
SPARTN and BC policies fail, given the same initial ob-
ject and end-effector configurations. Even in these fail-
ure cases, SPARTN qualitatively performs better than BC,
nearly grasping the object in some cases, and dropping the
object soon after grasping in other cases. See the videos on
the website for additional qualitative results.

D.5. Real-World Environments

The real-world environments shown in Figure 6 each in-
clude a single target object to grasp among other distractor
objects. The initial positions of all objects and the robotic
end-effector are randomized while collecting expert demon-
strations and during test time. The initial orientations of the
objects are also randomized such that all policies must per-
form end-effector orientation control to complete the task.
To make a fair comparison, we evaluate different policies
given the same set of initial configurations (as shown in Fig-
ure 7, Figure 9, and the videos on the website); we do this
by resetting the robot and environment to the same condi-
tions and alternating the rollouts of different policies before



Method No Depth Full 6-DoF Closed-Loop
[34, 45]

[53] ✓ ✓
[18, 24, 40, 54] ✓

[21, 32] ✓ ✓
[43] ✓
[39] ✓

[56, 58] ✓ ✓
SPARTN (ours) ✓ ✓ ✓

Table 7. Comparison of our approach with related grasping work.
SPARTN is the only approach to learn closed-loop 6-DoF grasping
policies from only RGB inputs.

moving on to the next test configuration. Rollouts are con-
sidered successful if the robot grasps the target object and
lifts it steadily into the air. We describe the details of each
environment below:

• Banana: The environment includes an artificial ba-
nana resting on a white ceramic plate, a red cup, an ar-
tificial avocado, an artificial tomato, and a plastic fork
and knife resting on a blue cloth.

• Thin box: The environment includes a thin brown box
resting on a thicker white toy box.

• Steel water bottle: The environment includes a steel
water bottle, a red water bottle, and an aluminum can.
The steel water bottle is highly reflective.

• Wine glass: The environment includes a wine glass,
red water bottle, and blue water bottle all placed
upside-down and leaning against a brown box. The
wine glass is transparent.

• Lubriderm bottle: The environment includes a white
Lubriderm bottle, an orange Neutrogena bottle, and a
small white container of moisturizer.

• White tape roll: The environment includes a roll of
white tape resting on a roll of blue tape, as well as a
pair of black scissors. The rolls of tape are radially
symmetric.

• Tupperware: The environment includes a plastic tup-
perware container with a red lid, as well as three artifi-
cial food items: a donut, a cookie, and a slice of pizza.

• Fork: The environment includes a fork resting on top
of a plastic tupperware container. The fork’s location
and orientation relative to the surface of the tupper-
ware container is fixed, but the position of the entire
assembly is randomized.


