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This supplementary material contains the appendix of
our paper and a part of additional results. For more
supplemental results in high resolution, please check our
web-page at https://github.com/EliotChenKJ/
Guided-Correspondence-Loss.

A. Difference to the Contextual loss
Mechrez et al. [6] proposed the Contextual loss for im-

age transformation with non-aligned data. Heitz et al. [5]
proved it unsuitable for texture synthesis but didn’t analyze
why. In this section, we will try to figure out the reason and
make clear the difference between the Contextual loss and
our Guided Correspondence loss (besides the difference in
features involved, since we considers the matching diversity
and additional guidance in the patch distance).

The Contextual loss measures image similarity based on
semantic features. The motivation behind its design is to
search for correspondence pairs that are significant enough
between all source and target samples. Briefly, it first con-
siders the similarity of a target sample with respect to the
context of the entire source image. Then all the target sam-
ples are involved as the context for each source sample, and
the overall similarity is defined therefrom.

To be more specific, as illustrated in Figure 1, the first
step of Contextual loss is to find the nearest neighbor for
each target/output sample ti. Then the similarity of ti to all
source/reference samples in S is normalized by the similar-
ity of ti to its nearest neighbor. After the normalization, the
second step is to choose the correspondence with the max-
imum similarity among all target samples for each source
sample sj . Finally, these similarities are summed up as the
contextual similarity between the entire S and T .

The so-designed Contextual loss may result in ill
matches for some target samples: 1) There might be more
than one match for some target samples, and 2) There might
be no match found for some target samples. Figure 1 shows
an illustration of this situation (see also Figure 3 in [6]).
These configurations are considered reasonable for image
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Figure 1. The computation of Contextual loss. For illustration,
we visualize the similarity/distance matrix between all the target
and source samples. The Contextual loss first searches the nearest
neighbor and normalizes the similarity matrix along the horizontal
direction. Then it finds the maximum similarity along the vertical
path. This design, however, may leave some target samples un-
matched or matched to more than one source sample, leading to
under-optimization or inconsistent optimization in the output. We
only adopt the first step of Contextual loss (search and normalize
horizontally) to build our Guided Correspondence loss.

transformation since the style reference could be very dif-
ferent from the (natural) image to be optimized. If the corre-
spondence pair is not significant enough, we keep the target
sample unchanged.

However, these ill matches may cause severe artifacts in
texture optimization. As shown in Figure 2, we can see
many pixels in the results produced by using the Contex-
tual loss look like noise, which means they are either under-
optimized or over-optimized (i.e., optimized by different
source samples).

Our Guided Correspondence loss, in contrast, is built
upon the MRF criterion. We aim to optimize every target
patch to be similar to a particular source patch. Since we
also hope the target sample is significantly closer to its near-
est neighbor than to all other source samples, we adopt the
first step of the Contextual loss, which corresponds to the
search and normalization along the horizontal direction of
the similarity matrix.
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Figure 2. Comparison with the Contextual loss [6] on uncontrolled texture synthesis. We use pretrained VGG-19 as the feature extractor,
based on which we compute the Contextual loss of the output texture to the input example. Then we optimize the output pixels via
back-propagation. Severe artifacts can be seen in their results due to under-optimization or inconsistent optimization of target patches.

B. Details of Training SPADE for Real-time
Controlled Synthesis

SPADE [7] is a conditional generative model proposed
recently. Briefly, SPADE takes a semantic label map as the
condition to modulate the feature activations in the gener-
ator to make the output image follow the given semantic
layout. We adopt it for real-time synthesis with progression
or orientation control maps as the condition. Take progres-
sion control as an example. We directly replace the label
maps with the progression maps. The challenge here is that
the network must have a strong generalization power, given
that the source progression is probably very different from
the user-specified target. To address that, we separate the
training into two stages.

As depicted in Figure 3, the first stage is reconstruction
training. We train 20k iterations to let the model learn how

to reconstruct the source textures from the source progres-
sion maps. Specifically, in each iteration, we randomly crop
a block from the source and its corresponding guidance
(256×256 pixels), and train SPADE without modification
(including the discriminator and the losses).

The second stage is training for random synthesis. For
that, we generate a massive number of random target pro-
gression maps from 1) source guidance perturbed by Perlin
noise [8], 2) source guidance stretched or rotated randomly,
and 3) pure Perlin noise. We also run 20k iterations for
the random synthesis. The proportions of the three types
of augmented target maps are 10%, 70%, and 20%, respec-
tively. Since now the generated image has no ”ground truth”
for the random synthesis, the Guided Correspondence loss
is necessary as proved in the paper as a complementary to
the conditional-GAN loss. More results are included in the
folder of “Supplementary”.



Figure 3. Utilizing the Guided Correspondence loss in training SPADE [7] for real-time controlled synthesis.

C. Details of Inversion-based Single-image
Editing

Recent single-image models [2, 3, 9] can be applied for
editing tasks but struggle to synthesize images of non-
repetitive objects [11]. To address that, Wang et al. [11]
proposed IMAGINE, a classifier-based inversion model to
regularize the image semantics of the synthesized image.
Specifically, they use ResNet50 [4] pre-trained on Ima-
geNet [1] to compute classification errors between the input
and output image. Through error back-propagation, the se-
mantics of the synthesized image is optimized to be object-
like. Then, to synthesize fine-level image details, IMAG-
INE involves a patch-based discriminator same as SinGAN
does, which is trained adversarially during the optimization
(IMAGINE optimizes the output and the discriminator in
an iterative turn). However, we found this ad-hoc training
of PatchGAN discriminator cannot guarantee fine textures
for the output. Considering the patch-based MRF property
of our Guided Correspondence loss, we remove the discrim-
inator, and compute the Guided Correspondence loss to en-
force the patch coherence across the synthesized image; see
Figure 4 for the illustration of our inversion-based single-
image editing.

Figure 5 show more results of single-image editing us-
ing the combination of classification loss (LClass) and the
proposed Guided Correspondence loss (LGC). Actually,
there’s another very recent work, MAGIC [10], proposed
by Rouhsedaghat et al. on this task. They introduce a pre-
trained quasi-robust classifier to provide stronger semantic
regularization, and an additional pre-trained segmentation

Figure 4. Based on the classifier-based inversion model of [11],
we propose to combine classification loss and the Guided Corre-
spondence loss to optimize the output image

network to enforce the synthesis following the mask guid-
ance. We compare our editing to this “enhanced” inversion
model, and found our results seemly have fewer artifacts;
see Figure 6.

D. Additional Results and Comparisons

Figure 7 shows uncontrolled synthesis results and com-
parison with state-of-the-art methods in the high resolution.
Figures 8, 9 and 10 show results of controlled synthesis
with different guidance channels, as well as the compar-
isons with Zhou et al. [13].

Figure 11 shows two examples of very challenging non-
stationary textures from TexExp [14]. Our method cannot
handle well these challenging textures with global struc-



Figure 5. More results of utilizing our Guided Correspondence loss for single-image editing with mask control. All the binary masks are
cropped from the preprint work [10].

Figure 6. Comparison with a preprint work, MAGIC [10] on mask-guided single-image editing. Note the results of MAGIC are directly
cropped from their paper as the code is currently unavailable. Many artifacts can still be seen in their results if we check carefully.

tures in uncontrolled scenarios. TexExp succeeds since its
encoder extracts a structural guidance for its decoder. Nev-
ertheless, when guidance channels are provided explicitly,
our method can also produce plausible results.

E. LPIPS score

Shortly speaking, LPIPS [12] calculates the L2 distance
between the activations of images from pre-trained VGG so
that measures perceptual similarity. It is demonstrated to

match human perception well. Given the semantic charac-
teristic of deep features, LPIPS is content invariant and ro-
bust to local distortions and color shifts. In texture synthe-
sis, however, our goal is to synthesize a new texture that is
usually larger than and, more importantly, different from the
exemplar in content (such as layout or patch distribution). It
is unsuitable to directly compute the LPIPS score between
the source texture and the synthesized output. We thus com-
pute it as we did for color distance. We randomly crop
1000 patches from both the target and the source texture.



Figure 7. Uncontrolled synthesis of stationary textures and comparison with state-of-the-art approaches.

Then for each target patch, we calculate its minimum LPIPS
score among the 1000 source patches. The average score
of all target patches is regarded as the final distance be-
tween the output and its source texture. As listed in Table 1,
our method is totally comparable to Self-tuning (closer than

using the color distance) in LPIPS metric. Comparing to
other deep approaches, our results possess higher percep-
tual realism, demonstrating again the synthesis quality of
our method.



Figure 8. Progression control and comparison with Zhou et al. [13].

Figure 9. Orientation control and comparison with Zhou et al. [13].

Figure 10. Two controls (progression and orientation control simultaneously) and comparison with Zhou et al. [13].



Figure 11. Our results on very challenging non-stationary textures with global structures from TexExp [14]. Although our method cannot
handle them well in uncontrolled scenarios (right), when guidance channels are provided explicitly, our approach can also produce plausible
results following user-specified structures (left).

Table 1. Comparison on LPIPS metric with state-of-the-art meth-
ods for uncontrolled synthesis (smaller is better).

PatchSize Self-tuning CNNMRF SWD SinGAN TexExp Ours

64 0.389 0.420 0.462 0.456 0.447 0.391
128 0.535 0.560 0.597 0.595 0.581 0.534

Table 2. Average running time of different methods for uncon-
trolled synthesis. We randomly pick 10 images from the dataset,
use the default settings for all methods, and record the running
time (in seconds). Note for the two GAN-based methods (Sin-
GAN & TexExp), we count their total time for training.

Self-tuning CNNMRF SWD SinGAN TexExp Ours
226.18 210.18 484.60 (5160.71) (6180.24) 313.28

F. Complexity and Limitation

The complexity of our loss is O(N2), where N is the
number of patches that we sampled on the target image. The
complexity is at the same level as Self-tuning, CNNMRF
and the SWD loss, as reflected from the average running
time shown in Table 2. While for the training efficiency
of real-time synthesis, it takes about 40 mins (running 3k
iterations) using our loss to train TextureNets and about 10
hours (running 40k iterations) to train SPADE.

The O(N2) complexity, however, brings the main limi-
tation to our method. Unlike traditional PatchMatch, which
only needs to store a few paras about the corresponding
patch, we have to save all the patch distances for the compu-
tation of contextual similarity. We can therefore have a lim-
ited number of augmentation copies to enlarge the search
space. For those textures containing diversely oriented
patches, such as the wood ring and dog fur, our method
can synthesize with acceptable smoothness and continuity
in orientation; see results shown in Figures 9 and 10. When
an exemplar only has monotonous oriented patches, such as
the bamboo and the rusty scratches (Figure 10 (left)), the
orientation change would be abrupt in the results.

There are two possible solutions to overcome this limita-
tion. One is to constrain the computation within a local con-
text. The other solution is to manually rotate the searched
source patch to follow the target orientation field after near-
est neighbor search.

This limitation also introduces artifacts to results of im-
age editing in some cases. As shown in Figure 12, the right
leg of Ostrich is missed due to the limited data augmenta-
tion. Then we can see the leg is coming back after we turn
on the rotation augmentation (8 copies as we did for orien-
tation control). But since this image is not a texture image,
the rotated patches also affected the background near the
foreground boundaries. We leave this issue for future work.



Figure 12. Left: input image; Middle: artifacts can be seen on the
right leg of the Ostrich in single image editing if we use the default
setting (without rotation augmentation); Right: after turning on the
rotation augmentation, the leg is coming back (right).
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