
Non-Contrastive Learning Meets Language-Image Pre-Training

Jinghao Zhou Li Dong Zhe Gan Lijuan Wang Furu Wei
Microsoft

A. Methodology Comparison
In this section, we compare different non-contrastive ob-

jectives derived from cross-entropy loss with different tech-
niques to avoid model collapse, i.e., to ensure both the
sharpness and smoothness of the representation. We first
showcase a general formulation to achieve this end in Al-
gorithm 1, and substantiate different self-supervised tech-
niques proposed in the vision field to our setting. We tuned
hyper-parameters for each item to suit best for language-
image pre-training. We follow the proposition of non-
collapsing representations [2, 3], where

||∇Hθ(pi)||+ ||∇Hθ(p)|| > 0 (1)

∀i ∈ [B] if the network parameters θ lead to collapsing
representation, i.e., pj = pk, ∀j, k ∈ [B]. pi ∈ RK is a
K-dimensional probability distribution for ith instance. In
both cases where pi = 1

K1K or pi ̸= 1
K1K , the above

equation holds such that the unified objectives is immune to
collapsing representations.

Experiments are conducted with ViT-B/16 on CC12M
for 25 epochs, the results of which are listed in Tab. A1.
For Centering, we use additional running variance and scale

Algorithm 1: PyTorch-like pseudo-code of the unified
objective for non-contrastive pre-training.

// fI ,fT : image & text projection

// p·, q·: target & predicted probability

def Lunified(fI , fT , τs, τ , λ1, λ2):
pI = uniform(softmax(fI / τs, dim=1))
pT = uniform(softmax(fT / τs, dim=1))
qI = softmax(fI / τ , dim=1)
qT = softmax(fT / τ , dim=1)
LCE = - (pI · log(qT ) + pT · log(qI )).sum(dim=1)

.mean(dim=0)
LEH = - (pI · log(pI ) + pT · log(pT )).sum(dim=1)

.mean(dim=0)
pI , pT = pI .mean(dim=0), pT .mean(dim=0)
LHE = - (pI · log(pI ) + pT · log(pT )).sum(dim=1)
L = LCE + λ1 · LEH - λ2 · LHE

return L / 2

Method Sharpness Smoothness ZS LN
τ/τs λ1 uniform(·) λ2

CE 1 0 - 0 Nan

SwAV [7] 1 / 0.25 0 Sinkhorn 1∗ 27.9 70.3
SCSF [1] 1 / 0.5 0 Batch-Softmax 0 26.5 70.0
DINO [8] 1 / 0.7 0 Centering† 0 22.9 69.1

MSN [2] 1 / 0.8 0 - 1 Nan
1 / 0.7 0 - 1 37.4 70.8

1 / 0.8 0.2 - 1.2 37.4 70.0nCLIP 1 0.5 - 1.5 37.5 71.0

Table A1. Comparison over different non-contrastive objec-
tives. CE denotes vanilla cross-entropy. ZS and LN denote top-1
zero-shot and linear probing accuracy. ∗ The original SwAV [7]
implementation sets λ2 as 0 while it is necessary under our setup
to set λ2 as 1 to avoid collapsing solutions. † Centering is per-
formed in practice before (instead of after) softmax.

parameters to uniform the target probability, which yields
more stable training compared to the original [8] with a
running mean only. For objectives with an explicit func-
tion uniform(·), the asymmetry of the forward pass of the
target and predicted probability incurs an inconsistency be-
tween training and evaluation, which leads to poor zero-shot
performance. While the descent linear probing accuracy
of these objectives suggests capabilities to learn representa-
tion, they lose a unique advantage for zero-shot recognition.
MSN [2] uses the mean entropy maximization regularizer to
ease the usage of explicit uniform function, which is essen-
tially the HE term. Comparatively, the joint optimization
of EH and HE does not rely on different temperatures for
target and predicted probability, creating perfect symmetry
between the two branches, and is observed to also improve
the training stability (Nan in row 5 vs. 37.0% in row 7).

B. Additional Ablations

We provide additional ablation studies in this section.
Experiments are conducted with ViT-B/16 on CC12M for
25 epochs by default.
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(a) Column std. Std converges to
1 if training is stable due to Batch
Normalization.
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(b) Row std. An unevenly large
λ1 yields a small row std. λ2

should be increased accordingly.
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(c) LKL. The discrepancy be-
tween the two modalities increase
at first if the training is stable.
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(d) LEH. Entropy is minimized to
be close to 0. Imbalanced or larger
λ1 yields smaller LEH.
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(e) LHE. Mean entropy is maxi-
mized to ensure a uniform distri-
bution.
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(f) Accuracy. Accuracy measures
how well the one-hot prediction
from two modalities is matched.

Figure B1. Entropy regularizer. We showcase the training statistics with different λ1 and λ2. Setting λ1 > 0 is the key to avoiding
collapsing solutions. λ1 = 0.5 and λ2 = 1.5 leads to stable training and optimal downstream performance.

B.1. Entropy Regularizer

In this section, we testify claims made on Sec. 4.4 using
pre-training statistics as clues. We monitor the loss scale
of LKL(=LCE-LEH), LEH, and LHE, as well as the stan-
dard deviation (std) of the row and the column of proba-
bility matrix PT = [pT

1 ,p
T
2 , ...,p

T
B ] ∈ RB×K . Note that

LCE+λ1·LEH−λ2·LHE = LKL+(1+λ1)·LEH−λ2·LHE.
With the results and statistics given in Tab. 9a and Fig. B1,
we present the following discussions:

1) λ1 = 0, λ2 = 1 (gray). When using only LHE, the
model fails to converge. The row std decrease to 0 and
column std oscillates drastically. LEH and LHE do not de-
crease, while LKL remains 0. This indicates that the distri-
butions are collapsing to a constant uniform distribution.

2) λ1 > 0, λ2 = 1 (green & orange). If λ1 > 0 through-
out training, the column std will be less oscillating at the
beginning. Both the row std and LKL will increase rapidly.
This mitigates the instability at the start. However, the row
std will be undesirably low after some iterations, this is due
to dimensional collapse, where several dimensions will not
be favored by any instance.

3) λ1 = λ2 − 1 > 0 (blue). This couples LEH and LHE

into one term λ2 · (LEH − LHE), optimizing less on LKL

while more on non-collapsing condition, which stabilizes
the training at the beginning when two modalities can be
drastically different. LKL arises more rapidly at the begin-
ning. Increasing λ2 eases the dimensional collapse at the
latter part of the training.

B.2. Meeting in One Latent Space

We experiment with another idea where contrastive and
non-contrastive objectives meet in one shared latent space
instead of two separate latent spaces in a multi-task man-
ner. Specifically, we introduce negative samples to the non-
contrastive objective by replacing Eq. (2) to the matrix mul-
tiplication form with InfoNCE. Let P = [p1,p2, ...,pB ]
and Q = [q1, q2, ..., qB ]. We consider the following CE
term:

LC̃E = InfoNCE((PTlog(Q) + log(P )TQ)/σ)

= − 1

B

∑
i∈B

log
exp((pT

i log(qi) + log(pi)
Tqi)/σ)∑

j exp((p
T
i log(qj) + log(pi)Tqj)/σ)

= − 1

B

∑
i∈B

((pT
i log(qi) + log(pi)

Tqi)/σ − Φ(Zi,·))

= LCE/σ − 1

B

∑
i∈B

Φ(Zi,·). (2)

Φ denotes log-sum-exponential log
∑

j exp(xj) and is an
approximation of max(·) function with σ → 0. Compared
to Eq. (2) that only computes losses over the diagonal terms
of the distance matrix, we now also optimize over the off-
diagonal terms. This ensures unmatched negative image-
text pairs are distracted under the distance metric of cross-
entropy, while matched positive pairs are attracted. The fi-
nal objective is

LyCLIP = LC̃E + λ1 · LEH − λ2 · LHE (3)

We would like to see whether the two objectives conflict
and can be optimized in on latent space. As shown in



Method λ1 λ2 AccC AccnC ZS LN

CLIP - - 88.3 - 36.8 68.5
nCLIP - - - 59.0 37.5 71.0

yCLIP
0 0 81.6 0.1 38.9 69.9

0.5 1.5 83.2 0.1 40.2 70.3
3.0 4.0 66.3 29.3 29.4 68.9

xCLIP 0.5 1.5 89.2 60.2 42.4 72.2

Table B2. Meeting strategy of CLIP and nCLIP. They are met in
one latent space (yCLIP) via a hybrid objective or separate latent
spaces (xCLIP) via multi-tasking of vanilla objectives. AccC de-
notes the accuracy of CLIP to discriminate positive samples across
the batch. AccnC denotes the accuracy of nCLIP to predict the
same one-hot assignment across the channel.

Tab. B2, when λ1 = λ2 = 0, LyCLIP reduces to LCLIP

with sole difference on distance metric and incurs a 2.1%
and 1.4% performance gain on ZS and LN, respectively.
When λ1 = λ2 − 1 > 0, LyCLIP behaves more similar to
LnCLIP with scaling and an additional negative term. Set-
ting λ1 = 0.5, λ1 = 1.5 is insufficient to avoids model col-
lapse as implied by AccnC. While increasing the weights of
regularizers and setting λ1 = 3, λ1 = 4 yields seemingly
balanced AccC and AccnC, we observe only a 29.4% zero-
shot accuracy with the pre-trained model, validating the
contradiction of two objectives in one shared latent space.
While a bespoke design may exist, we opt for simple multi-
tasking of CLIP and nCLIP in separate spaces.

C. Additional Implementation
Zero-shot classification. We follow the same setup
as [28], with prompt engineering for each of the 27 eval-
uation datasets, including Food-101 [6], CIFAR-10 [23],
CIFAR-100 [23], Birdsnap [5], SUN397 [35], Stanford
Cars [22], FGVC Aircraft [25], Pascal VOC 2007 Clas-
sification [15], Describable Textures [12], Oxford-IIIT
Pets [27], Caltech-101 [16], Oxford Flowers 102 [26],
MNIST [24], Facial Emotion Recognition 2013 [18], STL-
10 [13], EuroSAT [19], RESISC45 [11], GTSRB [30],
KITTI [17], Country211 [28], PatchCamelyon [33],
UCF101 [29], Kinetics700 [9], CLEVR Counts [20], Hate-
ful Memes [21], Rendered SST2 [28], and ImageNet [14].
The final text embedding is ensembled by averaging all text
embeddings with different prompts.

Fine-tuning & semi-supervised learning. We use a
training recipe from [4], with a layer-wise learning rate de-
cay rate of 0.65, a weight decay of 0.05, a drop path rate of
0.1, a total epoch of 100, and DeepSpeed. We use [CLS]
token for classification. We disable relative positional em-
bedding and layer scaling. We sweep over four learning
rates {3e−3, 4e−3, 5e−3, 6e−3} for all models. For semi-
supervised learning with partial data, we find that keep-

Model Data Supervision J
random - - 25.7
DeiT [31] ImageNet class 30.4
MSN [2] ImageNet self 38.6
TWIST [34] ImageNet self 44.1
iBOT [37] ImageNet self 44.1
DINO [8] ImageNet self 44.7
MoCoV3 [10] ImageNet self 45.9

CLIP IT35M text 41.2
nCLIP IT35M text 43.7
xCLIP IT35M text 41.9

Table D3. Masking probing. J denotes Jaccard similarity be-
tween predictions and the ground-truth. Models with ViT-B/16
are listed.

Model Data mAcc mIoU

CLIP IT35M 42.9 24.8
xCLIP IT35M 53.1 38.4

Table D4. Unsupervised segmentation with GroupViT. Models
based on ViT-S are evaluated.

ing CLIP’s projection head yields better performance, espe-
cially with 1% of data. Specifically, the [CLS] token is fur-
ther forwarded to CLIP’s image projection head and is clas-
sified via a cosine classifier with the temperature learned
during pre-training. we initialize the weight of the classi-
fier as the text embedding of ImageNet labels. We do not
observe evident gain when fine-tuning on full data.

D. Additional Results
D.1. Mask Probing

The results are shown in Tab. D3. For the top
panel, we showcase the performance of a range of self-
supervised models pre-trained with ImageNet-1K. Mo-
CoV3 [10] achieves a J of 45.9 points while the supervised
baseline [31] lags behind with only a J of 30.4 points. For
the bottom panel, we showcase text-supervised models pre-
trained with different objectives. We note that text super-
vision can also derive explicit boundary scene layout, with
all models achieving decent results. Among them, nCLIP
performs the best with 43.9 points which is on par with ad-
vanced self-supervised models.

D.2. Unsupervised Segmentation with GroupViT

We consider small-size GroupViT [36] under the set-
ting of unsupervised semantic segmentation with PASCAL
VOC 2012 [15] dataset. We strictly follow the original setup
to train CLIP and a similar recipe to train nCLIP, with only
one difference initializing learning rate as 5e−4. We do not
use the multi-label loss as in [36] for simplicity. The re-
sults are shown in Tab. D4. xCLIP achieves 38.4 points of
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Ground-truth text

Mis-retrieved text

Image paired with

mis-retrieved text

Two men, one younger than the other 

and wearing glasses, sit on the beach 

in shorts and read magazines.

A group of people are camping 

out on some rocks.

Background skiers watch as a helmeted, 

goggled skier raises one arm in the air as he 

hangs suspended, mid-jump on a snowy slope.

A person in a green and white jacket and 

green pants is practicing on his snowboard.

A group of people on a crowded 

sidewalk boarding a double-decker bus.

People stand along the sidewalk 

watching a bus come their way.

Figure D2. Failure case analysis of nCLIP on zero-shot image-to-text retrieval.

mIoU and 53.1 points of mAcc, which is sufficiently better
than CLIP baseline, indicating the non-contrastive objective
help to learn better object boundaries and scene layouts.

E. Visualization

E.1. Failure Cases of nCLIP in Retrieval

We demonstrate several failure cases of nCLIP (that is
correctly retrieved by CLIP) in zero-shot image-to-text re-
trieval. As shown in Fig. D2, nCLIP tends to mis-retrieve
texts containing similar visual elements (e.g., rocks in the
first column). Their paired images usually contain simi-
lar objects, conceptions, and scene layouts. Empirically,
nCLIP tends to overlook fine-grained features, i.e., color,
attribute, or number but remains generally good sense in
predicting high-level semantics. In these senses, the non-
contrastive objective serves better as an appending regular-
izer instead of one single term when downstream tasks so-
licits direct fine-grained projections as in zero-shot retrieval.

F. Hyper-Parameters

See Tab. F5 for pre-training hyper-parameters.

G. Class Representation

To validate the non-contrastive term helps learning bet-
ter semantics-meaningful representation, we visualize the
t-SNE [32] of ImageNet-1K classes over validation set in
Figs. G3 to G6. Specifically, we showcase both the text’s
embedding and an average of images’ embedding for each

Hyper-parameter Value

batch size 4096
training epochs 32
learning rate 1e−3

learning rate end 2e−6

learning rate scheduler cosine decay
weight decay 0.2
warm-up epochs 3
optimizer AdamW
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e−6

λ1 0.5
λ2 1.5
head arch 4096 - 32768

Table F5. Pre-training hyper-parameters.

of the 1000 classes. We use cosine distance and CE as pre-
computed metrics for contrastive and non-contrastive ob-
jectives, respectively. We run t-SNE with a perplexity of
20 and a learning rate of 200 for 5000 iterations. The non-
contrastive objective comparatively leads to more semantic-
meaningful clusters. For example, animals with different
species are better separated and visually-similar objects are
better attracted.



Figure G3. t-SNE visualization on image embeddings of CLIP.



Figure G4. t-SNE visualization on image embeddings of nCLIP.



Figure G5. t-SNE visualization on text embeddings of CLIP.



Figure G6. t-SNE visualization on text embeddings of nCLIP.
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