
OcTr: Octree-based Transformer for 3D Object Detection
Supplementary Material

This supplementary material provides more implemen-
tation details on OcTr in Sec. A, more experiments results
in Sec. B and additional visualization in Sec. C.

A. More Implementation Details

A.1. Detailed Implementation

The voxel size in WOD and KITTI is set as [0.1m, 0.1m,
0.1875m] and [0.05m, 0.05m, 0.125m], respectively. The
convolution patch embedding module outputs the feature
map with a downsampling ratio of 4 and the dimension of
the feature map is set as 64 × 8 × 376 × 376 in WOD and
64× 8× 400× 352 in KITTI. There are two stacked octree
Transformer layers, with two Octree Transformer Blocks
(OTBs) in each layer. In the first layer, the pyramid height,
the attention dimension, the number of heads, the dimen-
sion of heads, and the value of topk are set to 4, 64, 2, 32
and 8, respectively. In the second layer, they are set to 3,
64, 2, 32 and 8. τ in Eq. (6) is set to 1 and Γ in Eq. (10) is
10000 in practice. During the training procedure, we adopt
the Adam optimizer with a batch size of 16, and the co-
sine annealing learning rate scheduler with an initial value
of 0.01 for the two-stage model and 0.003 for the single-
stage model. Other hyper-parameters in detection heads,
data augmentation and post-processing are set the same as
the default values in OpenPCDet [5].

Our code is implemented based on OpenPCDet [5]. All
the experiments are conducted on 4 RTX 3090 GPUs except
the ones on complexity analysis shown in Table 9.

A.2. Detailed Architecture

The detailed architecture of OcTr is demonstrated in
Fig. A. The convolutional patch embedding is composed of
sparse convolutions with the kernel size of 3×3×3, and 4×
downsampling is conducted on input feature maps. A reg-
ular sparse convolution layer is applied for downsampling
between OTBs, and the successive height compression op-
eration is replaced with a pixel-wise sub-manifold sparse
convolution on BEV features.

Submanifold Sparse Conv kernel=3 × 3 × 3 stride=1

𝟒 × 32 × 1408 × 1600

𝟏𝟔 × 32 × 1408 × 1600

Regular Sparse Conv kernel=3 × 3 × 3 stride=2

Submanifold Sparse Conv kernel=3 × 3 × 3 stride=1

𝟑𝟐 × 16 × 704 × 800

Regular Sparse Conv kernel=3 × 3 × 3 stride=2

𝟔𝟒 × 8 × 352 × 400

Octree Attention Module
tree_depth=4 topk=8 attending_grids=32

dim=64 head_dim=32 heads=2
ffn_dim=128 dropout=0

Octree Attention Module
tree_depth=4 topk=8 attending_grids=32

dim=64 head_dim=32 heads=2
ffn_dim=128 dropout=0

Regular Sparse Conv kernel=3 × 3 × 3 stride=2

𝟔𝟒 × 8 × 352 × 400

𝟔𝟒 × 4 × 176 × 200

Octree Attention Module
tree_depth=3 topk=8 attending_grids=32

dim=64 head_dim=32 heads=2
ffn_dim=128 dropout=0

Octree Attention Module
tree_depth=3 topk=8 attending_grids=32

dim=64 head_dim=32 heads=2
ffn_dim=128 dropout=0

𝟔𝟒 × 4 × 176 × 200

Submanifold Sparse Conv kernel=4 × 1 × 1 stride=1

𝟐𝟓𝟔 × 1 × 176 × 200

Octree Transformer Block

Octree Transformer Block

Convolutional Patch Embedding

Figure A. Detailed architecture of the proposed OcTr network.

A.3. Topk Sampling

Topk sampling is an important component in OcTr (in
Sec. 3.3 of the main body). To generate the selected sparse

1

Pre-calculated
Index Bank

Parents Children

querying flattening

compacting

truncating

𝑂𝑛+1

𝐾
𝑘

Figure B. Illustration of topk sampling (the white/colored square
denotes empty/non-empty grid, respectively).

𝑆𝑞 ≥ 𝛿𝑞

𝑆𝑘 ≥ 𝛿𝑘

−Γ 1 −𝑀 𝐴)+𝜎(= 𝐴′

back fore -Γ zero unchanged masked

Figure C. In SAM, the attention scores of background grids main-
tain unchanged, while those of foreground ones are masked.

octants for subdivision, we first record the indices between
the child and parent octants as a pre-calculated index bank.
Fig. B depicts the entire procedure. In level n, by query-
ing about topk parent octants and the pre-calculated index,
we densify the sampling outputs K⃗ ∈ RB×mn+1×8·k×d and
flatten the tensors of the key/value in an 8 · k → [k, 8] man-
ner. We then compact the tensor and truncate the top K
children, resulting in K⃗ ∈ RB×mn+1×K×d. By using the
pre-defined index bank, we broadcast the sampled tensors
to align the features in layer n, generating a tensor with the
shape of RB×mn×K×d.

According to statistics, the downsampling ratio in feature
pyramid construction is fixed as 3.2, i.e. mn/mn+1 ≈ 3.2.
Empirically, to adequately query, we set K = 4 × k in our
implementation.

A.4. Semantic Attention Mask

Following Eq. (10) in the main body, we further show
the details of SAM in Fig. C. To obtain a mask for inferior
foreground grids, we define a boolean tensor Mq = ISq≥δq ,
where Sq is calculated by the mean scatter function 1. Sim-
ilarly, we have Mk = ISk≥δk and obtain the boolean se-

1https://pytorch-scatter.readthedocs.io/

Figure D. Visualization on the KITTI val set. The blue/red bound-
ing boxes indicate the predicted/ground-truth results, respectively.

mantic mask on the attention matrices, which is measured
by M = Mq · Mk. Though segmentation scores indicate
the significance of grids, they suffer from inaccurate predic-
tions. Considering that the mask M tends to suppress the
attention scores of the background grids to 0 and thus de-
teriorate representations, we simply maintain the attention
scores of the background unchanged. The hyper-parameters
δq and δk are set to 0.05 and 0.2, respectively.

Model Vehicle (L1) Vehicle (L2) Pedes. (L1) Pedes. (L2) Cyclist (L1) Cyclist (L2)
mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH

CF (1 frame) [7] 75.2/74.7 70.2/69.7 78.6/73.0 73.6/68.3 72.3/71.3 69.8/68.8
CF (8 frames) [7] 78.8/78.3 74.3/73.8 82.1/79.3 77.8/75.0 75.2/74.4 73.2/72.3
FSD [1] 79.2/78.8 70.5/70.1 82.6/77.3 73.9/69.1 77.1/76.0 74.4/73.3
Graph-RCNN [6] 80.8/80.3 72.6/72.1 82.4/76.6 74.4/69.0 75.3/74.2 72.5/71.5
OcTr 79.2/78.7 70.8/70.4 82.2/76.3 74.0/68.5 73.9/72.8 71.1/69.2

Table A. Performance on WOD validation with 100% training data.

Model Vehicle (L1) Vehicle (L2) Pedes. (L1) Pedes. (L2) Cyclist (L1) Cyclist (L2)
mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH mAP/mAPH

SECOND [50] 76.2/75.7 68.3/67.8 68.6/55.3 62.8/50.5 62.4/56.6 60.1/54.6
Ours (SECOND) 77.9/77.4 70.2/69.7 71.5/61.1 65.7/56.1 70.7/69.3 68.1/66.8
PV-RCNN++ [37] 81.6/81.2 73.9/73.5 80.4/75.0 74.1/69.0 71.9/70.8 69.3/68.2
Ours (PV-RCNN++) 81.7/81.4 74.0/73.6 81.2/75.2 75.0/69.3 73.0/71.8 70.4/69.4

Table B. Performance on WOD test with 100% training data.

B. More Experiments Results

We add experiments with 100% training data and com-
pare OcTr with Graph-RCNN [6], FSD [1] and Center-
Former (CF) [7]. Note that PVRCNN++ in Table 1 is
the same as PVRCNN++ (center). As in Table A, Graph-
RCNN and CF (8 frames) achieve higher results, but either
with multi-modal or multi-frame data for prediction. When
using single frames, OcTr clearly outperforms CF. As for
FSD, the performance of OcTr is comparable or even better
than that of FSD on vehicle and pedestrian, but is moder-
ately lower on cyclist. However, FSD builds a strong de-
tection head, which tends to be complementary to our OcTr
backbone. We believe that OcTr can be further promoted by
combining FSD.

We also conduct experiments on Waymo test in Table B
using the representative single-stage SECOND and two-
stage PVRCNN++, and the results confirm the effectiveness
of our method. It should be noted that the common testing
tricks, e.g. TTA and WBF, are not applied.

C. More Visualization Results

We additionally visualize some detection results by us-
ing the proposed OcTr network on KITTI [2] and WOD [4]
in Fig. D and Fig. E, respectively. We use the two-stage de-
tector PVRCNN++ [3] as our baseline model and only pre-
dict cars on KITTI. As displayed, we can observe that OcTr
delivers accurate localization and classification for distant
and sparse samples, even in crowded scenes.

References

[1] Lue Fan, Wang Feng, Wang Naiyan, and Zhang Zhaoxiang.
Fully sparse 3d object detection. In NIPS, 2022. 3

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, pages 3354–3361, 2012. 3

[3] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu
Guo, Jianping Shi, Xiaogang Wang, and Hongsheng Li. Pv-
rcnn++: Point-voxel feature set abstraction with local vector
representation for 3d object detection. IEEE TPAMI, 2021. 3

[4] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in percep-
tion for autonomous driving: Waymo open dataset. In CVPR,
pages 2446–2454, 2020. 3

[5] OpenPCDet Development Team. Openpcdet: An open-source
toolbox for 3d object detection from point clouds. https:
//github.com/open-mmlab/OpenPCDet, 2020. 1

[6] Honghui Yang, Liu Zili, Wu Xiaopei, Wang Wenxiao, Qian
Wei, He Xiaofei, and Cai Deng. Graph r-cnn: Towards accu-
rate 3d object detection with semantic-decorated local graph.
In ECCV, 2022. 3

[7] Zixiang Zhou, Zhao Xiangchen, Wang Yu, Wang Panqu, and
Hassan Foroosh. Centerformer: Center-based transformer for
3d object detection. In ECCV, 2022. 3

https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

Figure E. Visualization on the WOD validation set in crowded scenes. The blue/red bounding boxes indicate the predicted/ground-truth
results, respectively.

	. More Implementation Details
	. Detailed Implementation
	. Detailed Architecture
	. Topk Sampling
	. Semantic Attention Mask

	. More Experiments Results
	. More Visualization Results

