
Supplementary Material:
Query-Centric Trajectory Prediction

Zikang Zhou1,2 Jianping Wang1,2 Yung-Hui Li3 Yu-Kai Huang4

1City University of Hong Kong 2City University of Hong Kong Shenzhen Research Institute
3Hon Hai Research Institute 4Carnegie Mellon University

1. Implementation Details

1.1. Architecture

The hidden feature dimension is 128. All layers for in-
formation fusion have the same architecture, which is sim-
ilar to the gated variant of attention mechanism used in
HiVT [9]. The number of heads in the multi-head atten-
tion operator is 8. Layer normalization [1] is used in MLPs
and attention layers. Our default configuration uses 3 re-
current steps in the trajectory proposal module and 2 blocks
of multi-context attention in both the encoder and the de-
coder. Since the Waymo Open Motion Dataset (WOMD)
requires models to predict 8-second future trajectories, we
use 4 recurrent steps for better long-term performance. Un-
like other DETR-like motion decoders which first generate
a large number of trajectory candidates and then produce the
final top-K predictions via heuristic post processing such as
non-maximum suppression, our decoder only uses K mode
queries for much higher efficiency. The model size for Ar-
goverse 1, Argoverse 2, and WOMD are 7.2M, 7.3M, and
7.5M, respectively.

1.2. Training

We adopt the AdamW optimizer [4] to train models in
an end-to-end manner for 64 epochs with a batch size of
32, a dropout rate of 0.1, and a weight decay coefficient of
1 × 10−4. Due to the larger scale of WOMD, we halve the
number of training epochs when doing experiments on this
dataset. The hyperparameter λ is set to 0.1, 1.0, and 1.0 on
Argoverse 1, Argoverse 2, and WOMD, respectively. The
learning rate is initialized to 5× 10−4 and is decayed using
the cosine annealing scheduler [3]. Since the query-centric
design has already brought many invariance properties into
the model, we do not use data augmentation during training.

1.3. Ensembling

As the recent state of the art has employed heavy model
ensembling to boost their performance, we additionally re-
port the ensembling results of 5 models on Argoverse 1

and Argoverse 2 for more fair comparisons. These mod-
els are trained using different random seeds, and we use the
weighted k-means algorithm to aggregate their forecasted
trajectories. Specifically, we use the k-means implementa-
tion in scikit-learn [6] with all predicted trajectories’ end-
points as input and the predicted classification scores as
sample weights. After cluster assignment, the trajectories
within each cluster are averaged.

2. Discussion on Inference Latency
Most state-of-the-art trajectory prediction models (e.g.,

Wayformer [5] and MTR [7]) are tailored for single-agent
prediction, suffering from redundant scene encoding when
they are required to make predictions for multiple agents.
In contrast, the query-centric design of QCNet naturally in-
troduces roto-translation invariance in the space dimension,
enabling multi-agent prediction in a single forward pass.
Moreover, thanks to the additional translation invariance in
the time dimension, QCNet can avoid re-normalizing and
re-encoding agent states and map elements that have ap-
peared in previous observation windows during online in-
ference. As a result, the complexity of our encoder is an or-
der less than existing factorized attention-based approaches.

We measure the end-to-end inference latency of our
model (i.e., the combination of the scene encoder, the pro-
posal module, and the refinement module) on the Argoverse
2 validation set using an NVIDIA A40 GPU. On average, a
traffic scene contains about 40 agents, and the inference la-
tency of predicting all agents’ future trajectories is 46 ms.
For the densest traffic scene involving 190 agents, 169 map
polygons, 50 past time steps, and 60 future time steps, our
model can make predictions for all agents with the latency
of 72 ms. In practice, we only need to consider the future
of agents that may have impact on the safety of autonomous
vehicles, so the inference latency can be lower.

3. Multi-Agent Quantitative Results
As discussed in Sec. 2, QCNet treats all agents in the

scene symmetrically, enabling multi-agent prediction in a

1



Model b-minFDE6↓ minADE6↓ minFDE6↓ MR6↓

GoRela 1.29 0.42 0.96 0.14
QCNet 1.26 0.38 0.62 0.07

Table 6. Marginal multi-agent prediction results on the Argoverse
2 validation set. For each scene, we evaluate the performance of
predicting the “focal agent” together with one or more “scored
agents” marked by the dataset.

Model minADE6↓ minFDE6↓ MR6↓

Scene Transformer 0.6117 1.2116 0.1564
HDGT 0.5703 1.1434 0.1440
DenseTNT 1.0387 1.5514 0.1573
MultiPath++∗ 0.5557 1.1577 0.1340
Wayformer∗ 0.5454 1.1280 0.1228
MTRA∗ 0.5640 1.1344 0.1160

QCNet (w/o ensemble) 0.5345 1.0749 0.1345

Table 7. Marginal multi-agent prediction results on the WOMD
test set. Baselines that are known to have used ensembling are
marked with symbol “*”.

single forward pass without sacrificing the performance.
We report the marginal multi-agent prediction results on
the Argoverse 2 validation set in Tab. 6. Compared with
the recent arXiv report GoRela [2], QCNet offers much
stronger multi-agent prediction performance. We further
evaluate our model’s capability of marginal multi-agent pre-
diction on WOMD. As shown in Tab. 7, QCNet significantly
outperforms the best ensembling results on the test set of
WOMD in terms of minADE6 and minFDE6, ranking 1st

in terms of these commonly used distance-based metrics.
Note that our amazing results are obtained from a single
model without relying on any ensemble methods or time-
consuming post processing. Using ensembling techniques
similar to other entries may further boost the performance.

4. Per-Category Quantitative Results

In Tab. 8, we report the per-category quantitative results
on the Argoverse 2 validation set. Compared with QML [8],
the second place solution in the 2022 Argoverse 2 motion
forecasting competition, our approach exhibits better per-
formance on all categories. We also observe that the predic-
tion result of motorcyclists is much worse than that of other
categories, presumably because the motions of motorcycles
are more flexible and the corresponding training samples
are insufficient. A similar phenomenon can be observed on
WOMD, where the trajectories of cyclists are much harder
to be predicted (see Tab. 9).

Model Category b-minFDE6↓ minADE6↓ minFDE6↓ MR6↓

Vehicle 2.13 0.83 1.45 –
Pedestrian 1.29 0.35 0.63 –

QML Motorcyclist 2.47 1.00 1.80 –
Cyclist 1.90 0.66 1.23 –

Bus 2.15 1.03 1.46 –

Vehicle 1.95 0.75 1.32 0.17
Pedestrian 1.29 0.34 0.63 0.05

QCNet Motorcyclist 2.46 0.90 1.81 0.20
Cyclist 1.83 0.63 1.19 0.20

Bus 1.88 0.95 1.25 0.16

Table 8. Per-category prediction performance on the Argoverse 2
validation set.

Dataset Category minADE6↓ minFDE6↓ MR6↓

Vehicle 0.6276 1.2522 0.1270
WOMD Pedestrian 0.3112 0.6441 0.0804
Val Set Cyclist 0.6626 1.3433 0.2013

Avg 0.5338 1.0799 0.1362

Vehicle 0.6268 1.2478 0.1258
WOMD Pedestrian 0.3128 0.6432 0.0783
Test Set Cyclist 0.6638 1.3335 0.1994

Avg 0.5345 1.0749 0.1345

Table 9. Per-category prediction performance on the validation set
and the test set of WOMD.

Model #Param minADE6↓ minFDE6↓ MR6↓

QCNet ((Lenc = Ldec = 1) 5.0M 0.5472 1.1096 0.1427
QCNet ((Lenc = Ldec = 2) 7.5M 0.5367 1.0881 0.1378
QCNet ((Lenc = Ldec = 3) 10.0M 0.5341 1.0816 0.1372

Table 10. Effects of the number of the layers on the WOMD vali-
dation set.

5. Ablation Study on WOMD
5.1. Effects of the Number of Layers

As shown in Tab. 10, increasing Lenc and Ldec from 1 to
3 can improve the prediction performance on WOMD, but
our main results reported in Tab. 7 and Tab. 9 are based on
the two-layer configuration with 7.5M model parameters in
total.

5.2. Effects of the Number of Recurrent Steps

We try to vary the number of recurrent steps in the trajec-
tory proposal module. Table 11 shows that using 4 recurrent
steps (i.e., decoding two-second trajectories at each recur-
rence) can achieve better results on WOMD.

6. Analysis of Qualitative Results
In this section, we give more detailed analysis of the

qualitative results on the Argoverse 2 validation set. In

2



(a) QCNet w/o refinement

(b) QCNet w/ refinement

Figure 5. Qualitative results on the Argoverse 2 validation set. Although two model variants almost perform equally well on the commonly
used metrics when tested in these scenarios, we find that adding the refinement module can improve the multimodality of the prediction.

#Recurrent Step minADE6↓ minFDE6↓ MR6↓

2 (4 sec/step) 0.5392 1.0953 0.1398
4 (2 sec/step) 0.5367 1.0881 0.1378

Table 11. Effects of the number of recurrent steps on the WOMD
validation set.

Sec. 6.1, we demonstrate that the commonly used metrics
for trajectory prediction, such as minADE6 and minFDE6,
cannot always reflect models’ actual performance objec-
tively. In Sec. 6.2, we show some common failure cases
where QCNet cannot offer reliable performance.

6.1. Beyond Metrics

In the examples shown in Fig. 5, two model variants al-
most perform equally well on the commonly used metrics
for trajectory prediction. Without the refinement module,
our model has already been able to cover the ground truth

(see Fig. 5a). However, it does not mean that the refine-
ment module has no advantages. In the fist two examples of
Fig. 5b, a vehicle stops in front of the target agent. With the
help of the refinement module, our model not only success-
fully covers the ground truth but also reasonably predicts
the potential lane change behavior. In the third example
where the target agent is at an intersection, the refinement
module enables our model to maximally cover all possibil-
ities, including going straight, left turn, and right turn. All
these cases demonstrate that the refinement module can sig-
nificantly enhance the multimodality, while the commonly
used metrics cannot reflect its merits. Thus, we believe that
the trajectory prediction community should consider more
reasonable metrics in the future.

6.2. Failure Cases

Knowing when a data-driven model may fail is important
for safety-critical applications such as autonomous driv-
ing. Although our approach has achieved outstanding per-

3



Figure 6. Failure cases on the Argoverse 2 validation set, where the geometry and topology of the map are extremely complex.

formance on motion forecasting benchmarks, it is unclear
whether the prediction model can enable safe motion plan-
ning, given that failure cases still exist. In this section, we
provide some qualitative results to help readers understand
when our model may fail. Hopefully, these failure cases
provide some insights on what future work can be done to
make a trajectory predictor more powerful and more robust.

6.2.1 Failing to Understand Complex Map Geometry
and Topology

While the map encoder and the agent-map fusion layers
have incorporated map information for modeling, we find
that failure cases still exist in scenarios where the map ge-
ometry and topology are complex. Some of these cases are
shown in Fig. 6. In the left example, our model success-
fully predicts the potential right turn at the first junction but
misses the turn at the second one. In the middle example,
multiple lanes intertwine at the intersection, making it dif-
ficult for the model to understand the connectivity of the
lanes. For this reason, our model misses the target agent’s
intention. In the right example, the model ignores the left
turn behavior due to the unusual lane curvature at the round-
about. We believe that more powerful map encoder can bet-
ter handle these challenging scenarios.

6.2.2 Failing to Predict Lane Change Behavior

Lane change is a common driving behavior in daily traffic
scenarios. Although missing a lane change only leads to rel-
atively small prediction error, the ability of predicting such
behavior has significant impact on the safety of autonomous
vehicles. Figure 7 shows some cases where our model fails
to capture the lane change intention of agents. In the left
example, the target agent crosses multiple lanes during the
turn, while the predictions of our model do not cover all
candidate lanes. In the middle example, a vehicle stops in

front of the target agent. Although our model has reason-
ably predicted the intentions of deceleration and right lane
change, it ignores the possibility of left lane change. In the
right example, the target agent changes a lane when crossing
the intersection. However, from the visualization we cannot
observe any cue that can help the prediction. We attribute
such failure cases to the partial observability of the environ-
ment. Future work on end-to-end perception and prediction
may be able to capture more information (e.g., the flashing
lights of vehicles) and mitigate this problem.

6.2.3 Failing to Predict U-Turn Behavior

We note that driving data are highly imbalanced: in most
scenarios, agents only exhibit trivial behavior such as going
straight with nearly constant velocity. For this reason, data-
driven models struggle to handle those rare cases. A typical
example is the U-turn behavior. As shown in Fig. 8, our
model fails to capture the U-turn behavior when the target
agent is almost static over the observation window. To deal
with such cases, we may need to balance the data distribu-
tion.

4



Figure 7. Lane change cases on the Argoverse 2 validation set.

Figure 8. U-turn cases on the Argoverse 2 validation set.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
1

[2] Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and
Raquel Urtasun. Gorela: Go relative for viewpoint-invariant
motion forecasting. arXiv preprint arXiv:2211.02545, 2022.
2

[3] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2017.
1

[4] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Proceedings of the International Conference
on Learning Representations (ICLR), 2019. 1

[5] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth
Goel, Khaled S Refaat, and Benjamin Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks.
arXiv preprint arXiv:2207.05844, 2022. 1

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research
(JMLR), 2011. 1

[7] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mo-
tion transformer with global intention localization and local
movement refinement. In Advances in Neural Information
Processing Systems (NeurIPS), 2022. 1

[8] Tong Su, Xishun Wang, and Xiaodong Yang. Qml for
argoverse 2 motion forecasting challenge. arXiv preprint
arXiv:2207.06553, 2022. 2

[9] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie
Lu. Hivt: Hierarchical vector transformer for multi-agent mo-
tion prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
1

5


	. Implementation Details
	. Architecture
	. Training
	. Ensembling

	. Discussion on Inference Latency
	. Multi-Agent Quantitative Results
	. Per-Category Quantitative Results
	. Ablation Study on WOMD
	. Effects of the Number of Layers
	. Effects of the Number of Recurrent Steps

	. Analysis of Qualitative Results
	. Beyond Metrics
	. Failure Cases
	Failing to Understand Complex Map Geometry and Topology
	Failing to Predict Lane Change Behavior
	Failing to Predict U-Turn Behavior



