
Appendix

A. Details of the Network Architecture

We have introduced the network architecture of Rep-
Mode in Sec. 3.2. To guarantee reproducibility, we pro-
vide more details in this section. As shown in Fig. 9, the
encoder-decoder architecture of RepMode is mainly con-
structed of the symmetrical downsampling and upsampling
blocks. Moreover, between the downsampling and upsam-
pling blocks, two successive MoDE blocks are employed
to further refine the feature maps. Finally, a MoDE block
without BN and ReLU is used to produce predictions. It
is worth noting that, using the proposed MoDE block and
GatRep, any plain network designed for dense prediction
tasks can obtain the powerful capability to handle multi-
ple tasks and meanwhile maintain the original architecture,
since only the convolutional layers need to be modified.

B. Pixel-Level Form of GatRep

In Sec. 3.4, we have described the matrix form of GatRep
for an intuitive understanding. In this section, we provide
the pixel-level form as an extension. Note that here we fol-
low the notations described in Sec. 3.4.

Step1: serial merging. In this step, we aim to merge W
and Wa of an Avgp - Conv expert into an integrated kernel
We. This merging is accomplished by using W to perform
a convolution operation on Wa, formulated as

We = W ⊛Wa, (7)

which is equivalent to

We
cO,cI,d,h,w =

CI∑
i=1

WcO,i,1,1,1 ∗Wa
i,cI,d,h,w, (8)

where the subscripts denote the indexes of tensors in the
corresponding dimensions and ∗ is the multiplication.

Step 2: parallel merging. In this step, we aim to merge
the kernels of all experts We

t where t = 1, 2, ..., T . This
merging is accomplished by a linear weighted summation
with the gating weights Ĝt = {ĝt}Tt=1, formulated as

Ŵe =

T∑
t=1

ĝt ⊙ Pad(We
t,K

′), (9)

which is equivalent to

Ŵe
cO,cI,d,h,w =

T∑
t=1

ĝt,cO ∗Wp
t,cO,cI,d,h,w

, (10)

where Wp denotes the kernel processed by Pad(·,K ′).

MoDE Block

MoDE Block

w/o BN and ReLU

Downsampling Layer

Upsampling Layer

Concatenation

32

32

32

64

64

64

128

128

128

256

256

256

512

512

32

32

32

64

64

64

128

128

128

256

256

256

1

Figure 9. Detailed architecture of the proposed RepMode. The
channel number of the output feature maps is shown next to each
block. Note that we omit some components (e.g. skip connections
and the final MoDE block) in Fig. 2 for the sake of brevity.

C. Details of the Experimental Setup

In this section, we provide more details of the experi-
mental setup to highlight the comprehensiveness and repro-
ducibility of our experiments. First, we would provide more
descriptions of datasets and implementation details in Ap-
pendix C.1 and Appendix C.2 respectively. Then, we would
provide mathematical definitions of the evaluation metrics
in Appendix C.3. Finally, we would further describe the
comparing state-of-the-art methods in Appendix C.4.

C.1. Datasets

In the experiments, we adopt a dataset collection [47]
to evaluate the performance of the comparing methods and
the proposed RepMode in SSP. The reason why we call it
“dataset collection” is because it totally contains twelve par-
tially labeled cell image datasets for SSP. In this dataset col-
lection, each dataset contains 54 to 80 high-resolution 3D
z-stack image pairs, where each bright-field input is associ-
ated with a fluorescent label (as we defined in Sec. 3.1). We
consolidate these datasets into one single partially labeled
dataset to conduct our experiments. Totally, there are 628
(resp. 70, 233) image pairs for training (resp. validation,
test). With a patch-based training scheme, a dataset of this
size is sufficient for such a 3D dense prediction task, which
is also recognized by [62, 70].

C.2. Implementation details

All experiments are accomplished with PyTorch 1.12.1
and CUDA 11.6, and run on a single NVIDIA V100 GPU
with 32GB memory. For a fair comparison, all random
seeds are fixed at 0 in each experiment. Moreover, auto-
matic mixed precision (AMP) is used to accelerate train-

ing. Due to variable image sizes and memory limitations,
we adopt a patch-based training scheme in the experiments.
Accordingly, in the validation and test phase, we utilize the
Gaussian sliding window strategy [30] to aggregate patch-
based predictions output by the network to obtain the fi-
nal predictions of full images. Specifically, we implement
the Gaussian sliding window strategy exactly following [70]
and the window size is set to the same size of training
patches (i.e. 32× 128× 128).

C.3. Evaluation metrics

The evaluation metrics that we adopted in the experi-
ments include MSE, MAE, and R2. Following the notations
described in Sec. 3.1, let yn and fn denote the ground-truth
label and the output prediction of n-th image pairs respec-
tively. Furthermore, let yni and fni indicate the i-th pixel
intensity of yn and fn respectively. These evaluation met-
rics can be formulated as

MSE(yn, fn) =
1

Pn

Pn∑
i=1

(yni − fni)
2, (11)

MAE(yn, fn) =
1

Pn

Pn∑
i=1

|yni − fni|, (12)

R2(yn, fn) = 1−
∑Pn

i=1(yni − fni)
2∑Pn

i=1(yni − ȳn)2
, (13)

where Pn is the total pixel number of n-th image pairs and
ȳn is the average of yni. We adopt MSE and MAE since
they are two commonly used evaluation metrics for regres-
sion. In addition to these two metrics, R2 is also be used in
our experiments for two following reasons: 1) Compared to
MSE and MAE, R2 further takes into account the variance
of the pixel intensity of a ground-truth label (see Eq. (13));
2) MSE and MAE have arbitrary ranges, while R2 normally
ranges from 0 to 1 and thus is a more intuitive measure.

With these metrics, we report the performance on twelve
datasets and present the overall performance by averaging
the metrics over all image pairs in Tab. 1. For a clear com-
parison, we also report the relative overall performance im-
provement over Multi-Net which is the most naive base-
line. Let mi and m′

i denote the overall results of a random
method and Multi-Net on the i-th metric. The relative over-
all performance improvement of this method over Multi-Net
on the i-th metric can be calculated as

∆Imp(mi,m
′
i) = (−1)vi

mi −m′
i

m′
i

, (14)

where vi = 1 if a lower value means better performance
for the i-th metric, and 0 otherwise. With such an infor-
mative measure, the performance differences in the experi-
ments can be clearly presented (see Tab. 1).

C.4. Comparing methods

In Sec. 4.2, we have briefly introduced the comparing
state-of-the-art methods of the experiments. Here we pro-
vide detailed descriptions of these methods: 1) Multi-Net
[47]: multiple individual networks, each of which aims to
handle one single-label prediction task; 2) Multi-Head: a
partially-shared network composed of a shared feature ex-
tractor and multiple task-specific heads, including two vari-
ants, i.e. multiple task-specific decoders (denoted by Dec.)
or last layers (denoted by Las.); 3) Conditional Network
(CondNet) [15]: a task-conditional network where the task-
aware prior is encoded as feature maps by a predefined hash
function; 4) Task Switching Networks (TSNs) [55]: a task-
conditional network that uses a fully connected module to
learn the task embedding for adaptive instance normaliza-
tion; 5) Pyramid Input Pyramid Output Feature Abstraction
Network (PIPO-FAN) [16]: a network that consists of a U-
shape pyramid architecture with multi-resolution images as
input, and a deep supervision mechanism to refine the out-
put in different scales; 6) Dynamic On-Demand Network
(DoDNet) [70]: a task-conditional network composed of
a shared encoder-decoder architecture, a controller for fil-
ter generation, and a dynamic convolutional head (i.e. three
convolutional layers); 7) Task-Guided Network (TGNet)
[62]: an improved version of DoDNet, where task-guided
residual blocks and attention modules are further introduced
to emphasize the features related to the specified task. No-
tably, we have equipped these networks with the same back-
bone of RepMode to ensure fairness.

D. Additional Analysis and Discussion
D.1. Task-incremental learning

We have conducted the corresponding experiments in
Sec. 4.4 to verify that the proposed RepMode can serve as
a better task-incremental learner. Here we detail the experi-
mental setup and provide additional analysis.

Experimental setup. We select the mainstream solu-
tions of SSP, i.e. Multi-Net and Multi-Head, for a compar-
ison. For Multi-Head, we select its “Dec.” variant since
it contains more task-specific parameters. First, all these
networks are pretrained on eleven datasets. Then, the pre-
trained networks are extended to a new task by being trained
on the remaining dataset. Note that the training of these
two phases also follows the implementation details that we
describe in Sec. 4.1 and Appendix C.2. Specifically, the
strategies of these networks for task-incremental learning
are: 1) Multi-Net: employ a new network to be trained on
the new dataset from scratch; 2) Multi-Head (Dec.): add
a new decoder to handle the new dataset and fine-tunes
the whole network; 3) RepMode: introduce an extra ex-
pert (here we choose a Conv 3 × 3 × 3 expert) and a new
gating module in each MoDE block, and only fine-tune the

Blocks MSE MAE R2

ACNet Block [12] .5075 .4197 .4611
RepVGG Block [14] .5034 .4122 .4654
DBB [13] .5023 .4102 .4667
MoDE Block .4956 .4078 .4735

Table 4. Comparison with other SOTA re-param blocks in SSP.
Note that we modify these blocks to adapt to our GatRep.

newly-introduced components with the other ones frozen.
We adopt the datasets of two basic subcellular structures,
i.e. nucleolus and cell membrane, for the experiments of
task-incremental learning.

Results and analysis. As shown in Tab. 3, the pro-
posed RepMode can achieve superior performance in task-
incremental learning. The main reason is that the experts
of RepMode are trained in a task-agnostic manner and thus
capable of learning the generalized domain knowledge of
SSP. When trained on a new dataset, RepMode can utilize
the pretrained experts to “transfer” such knowledge to the
new task. With this strategy, RepMode can easily adapt to
a new task of an unseen subcellular structure, rather than
learning it from scratch. Moreover, as long as the previ-
ous gating weights have been stored, the fine-tuned Rep-
Mode can maintain the original performance on the pre-
vious tasks since the parameters of the frozen experts are
fixed and preserved. Whereas, Multi-Net requires training
a new network and thus achieve poor performance in task-
incremental learning. Besides, Multi-Head needs to fine-
tune the whole network, which would result in an inevitable
performance drop on the previous tasks.

D.2. Comparison with other re-param blocks

The performance of the proposed MoDE block is already
verified in Sec. 4.3. In this subsection, we further compare
it with the existing SOTA re-param blocks [12–14] in SSP.
Below we would detail the experimental setup and conduct
the corresponding analysis.

Experimental setup. We select the following state-of-
the-art re-param blocks and modify them to a 3D convolu-
tion version: 1) Asymmetric convolution network (ACNet)
block [12]: consist of a Conv 3× 3× 3, a Conv 3× 1× 3,
and a Conv 3 × 3 × 1; 2) RepVGG block [14]: contains
a Conv 3 × 3 × 3, a Conv 1 × 1 × 1, and a residual con-
nection (since the channel numbers of the input and output
feature maps may be different, we replace it with an addi-
tional Conv 1×1×1 aiming to align the channel numbers);
3) Diverse branch block (DBB) [13]: consists of a Conv
1 × 1 × 1, a Conv 1 × 1 × 1 - Conv K ×K ×K, a Conv
1 × 1 × 1 - Avgp K × K × K, and a Conv K × K × K
(here we set K = 3, 5 and report the best result). More-
over, in order to adapt to our GatRep for a fair comparison,
all BN inside the branches are removed to ensure linearity.

Methods
Time (s)

GPU Memory (%)
Training Validation

RepMode w/o GatRep 135.87 1359.41 95.04
RepMode w/ GatRep 80.13 526.59 59.07

Table 5. Statistics of time and memory consumption. Note that
“Time” indicates the average time of a training epoch or a valida-
tion in a complete training phase, and “GPU Memory” indicates
the maximum percentage of allocated GPU memory during train-
ing. These results are acquired based on an NVIDIA V100 GPU
with 32GB memory.

We replace MoDE blocks with these blocks in RepMode,
and follow the implementation details that we describe in
Sec. 4.1 and Appendix C.2 to evaluate their performance.

Results and analysis. As we can observe in Tab. 4,
the proposed RepMode can still achieve competitive per-
formance when equipped with different re-param blocks,
which reveals its applicability. Furthermore, compared to
the other re-param blocks, our MoDE block can achieve bet-
ter performance in SSP. This is because the MoDE block is
composed of the experts with diverse configurations. Such
an efficient and flexible convolution collocation works well
with a task-conditioning strategy and is capable of handling
more generalized situations, which is also demonstrated by
the ablation studies in Sec. 4.3.

D.3. Cost reducing of GatRep

In Sec. 3.4, we have that claimed GatRep is an efficient
expert utilization manner for the MoDE block. Specifically,
compared to completely utilizing all experts to process the
input feature maps (see Fig. 4(a)), GatRep can significantly
reduce the computational and memory costs caused by the
multi-branch topology of MoE. In this subsection, we pro-
vide some empirical evidence to demonstrate this benefit of
GatRep. As we can observe in Tab. 5, GatRep can save
41.02% and 61.26% time in a training epoch and a vali-
dation respectively. This is because only one convolution
operation is required in a MoDE block when using GatRep.
Moreover, GatRep can reduce 37.85% peak GPU memory
utilization, since the output feature maps of all experts are
no longer separately calculated and stored. Using GatRep,
our RepMode can acquire cost-economic performance im-
provement and the ability to handle multiple tasks in an
all-shared network. As a result, RepMode can maintain a
compact practical topology exactly like a plain network, and
meanwhile achieves a powerful theoretical topology. Such a
technique can increase the device-friendliness of RepMode
in the practical scenarios of biological research.

D.4. Experimental results of multiple runs

To further verify the effectiveness of the proposed Rep-
Mode, we perform “four-fold cross-test” and report the av-

Transmitted-Light Image (Input) Fluorescent Image (Label) TGNet RepMode (Ours)

(a)

(b)

(c)

(d)

Figure 10. Examples of the prediction results on the test set, including (a) tight junction, (b) actomyosin bundle, (c) cell membrane, and (d)
endoplasmic reticulum. We compare the predictions of our RepMode with the ones of TGNet [62] which is a competitive method. Note
that the dotted boxes indicate the major prediction difference.

Methods MSE MAE R2

Multi-Head (Dec.) .5204 .4247 .4466
TSNs [55] .5134 .4202 .4538
TGNet [62] .5123 .4186 .4549
RepMode .5032 .4124 .4642

Table 6. Experimental results of “four-fold cross-test”. Note that
we present the average results of multiple runs.

erage results of multiple runs. Specifically, following the
ratio of 25%, we divide the dataset into four parts and then
select each part in turn as the test set to conduct the experi-
ments. We compare our RepMode with a Multi-Head vari-
ant (i.e. Multi-Head (Dec.)) and two competitive methods
(i.e. TSNs [55] and TGNet [62]). The experimental results
show that our RepMode remains superior (see Tab. 6).

E. More Qualitative Examples
In this section, we provide more qualitative examples as

an extension to Fig. 7. It is worth noting that all images,
including transmitted-light images, fluorescent images, and
prediction results, are visualized by Imaris 9.0.1 with identi-
cal rendering configurations respectively for a fair compar-
ison. Moreover, all examples are randomly selected from
the test set, and a random z-axis slice is presented for each
example. As shown in Fig. 10, Our RepMode can produce

relatively precise predictions even for those hard cases (e.g.
Fig. 10(c)&(d)), which demonstrates the remarkable effec-
tiveness of RepMode in SSP.

