
Supplementary Materials:
SparseFusion: Distilling View-conditioned Diffusion for 3D Reconstruction

We provide a more detailed overview of denoising dif-
fusion probabilistic models. We provide implementation
details for each component our approach, epipolar fea-
ture transformer (EFT), View-conditioned Diffusion Model
(VLDM), and diffusion distillation. We include 360 visual-
izations on our project page: https://sparsefusion.github.io/.

1. Background: Denoising Diffusion
Our method adopts and optimizes through denoising dif-

fusion models [2], and here we give a brief summary of the
key formulations used.

Training Objective. One can learn denoising diffusion
models by optimizing a variational lower bound on the log-
likelihood of the observed data. Conveniently, this reduces
to a training framework where one adds (time-dependent)
noise to a data point x0, and then trains a network ϵϕ to
predict this noise given the noisy data point xt.

LDM = Ex0,ϵ,t

[
wt ||ϵ− ϵϕ(xt, t)||2

]
where xt =

√
ᾱtx0 +

√
1− ᾱtϵ; ϵ ∼ N (0, 1)

(1)

Here, ᾱt is a scheduling hyper-parameter, and the weights
wt depend on this learning schedule, but are often set to 1
to simplify the objective.

Interpretation as Reconstruction Error. The above
noise prediction objective, which represents a bound on the
log likelihood, can also be viewed as a reconstruction er-
ror. Concretely, given a noisy xt, the network prediction
ϵϕ(xt, t) can be interpreted as yielding a reconstruction
for the original input, where the learning objective can be
rewritten as a reconstruction error:

x̂0,t =
xt −

√
1− ᾱtϵϕ(xt, t)√

ᾱt
(2)

LDM = Ex0,ϵ,t

[
w′
t ||x̂0,t − x0||2

]
(3)

While the above summary focused on unconditional dif-
fusion models, they can be easily extended to infer condi-
tional distributions p(x|y) by additionally using y as an in-
put for the noise prediction network ϵϕ.

Forward Process. The forward diffusion process, which
incrementally adds noise to a real image x0 until the image
becomes Gaussian noise xT , is defined in Eq. 4. Forward
variance β is usually defined by a fixed schedule.

q(xt|xt−1) = N (
√
1− βtxt−1, βtI) (4)

Reverse Process. The reverse diffusion process reverses
the noise added in the forward process, effectively denois-
ing a noisy image. When we generate a sample from a dif-
fusion model, we apply the reverse process T times from
t = T to t = 1. The reverse process is defined in Eq. 5,
where posterior mean µϕ(xt, t) is predicted from a network
and posterior variance σ2 follows a fixed schedule (though
other works such as [7] also learn σ2 with a network).

p(xt−1|xt) = N (µϕ(xt, t), σ
2I) (5)

Posterior Mean. Prior works [2, 7] have found that pa-
rameterizing the neural network to predict ϵ instead of xt−1

or x0 works better in practice. We write posterior mean in
terms of ϵ in Eq. 6 where αt = 1− βt and ᾱt = Πts=1αs.

µϕ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵϕ(xt, t)) (6)

As mentioned in the main text, this parametrization leads
to a training framework where one adds (time-dependent)
noise to a data point x0, and then trains the network ϵϕ to
predict this noise given the noisy data point xt.

In this work, we use conditional diffusion models to infer
distributions of the form p(x|y) by additionally using y as
an input for the noise prediction network ϵϕ(x,y, t).

2. Implementation Details
We provide detailed implementation and training details

for all components of SparseFusion.

2.1. Epipolar Feature Transformer

Overview. Epipolar feature transformer is a feed-forward
network that first gathers features along the epipolar lines
of input images before aggregating them through a series

1

https://sparsefusion.github.io/

of transformers. EFT is inspired by the GPNR approach by
Suhail et al. [8], but we modify the feature extractor back-
bone to better suit the sparse-view setup and additionally
use epipolar features for conditional diffusion. We describe
our implementation below.

Notation: Let gψ be the RGB branch and hψ be the feature
branch.

Inputs: C ≡ (xm,πm), a set of input images with known
camera poses and a query pose π – note that the poses are
w.r.t. an arbitrary world-coordinate system and we only use
their relative configuration.

Outputs: an RGB image x and a feature grid y correspond-
ing to the query viewpoint π.

Feature Extractor Backbone. Given input views C ≡
(xm,πm) where xm is the mth masked (black background)
input image of shape (256, 256, 3). We use ResNet18 [1] as
our backbone to extract pixel-aligned features by concate-
nating intermediate features from the first 4 layer groups of
ResNet18, using bilinear upsampling to ensure all features
are 128 by 128. For each image xm, we arrive at a feature
grid of shape (128, 128, 512).

Epipolar Points Projector. Given a query camera π,
each pixel in its image plane corresponds to some ray. Our
Epipolar Transformer seeks to infer per-pixel colors or fea-
tures, and does so by processing each ray using the multi-
view projections of points along it. For each ray r (param-
eterized by its origin and direction), we project 20 points
along the ray direction with depth values linearly spaced
between z near and z far. We set z near to s − 5 and
z far to s + 5 where s is the average distance from scene
cameras to origin computed per scene. The 20 points, with
shape (20, 3), are then projected into the screen space of
each of the m input cameras, giving us epipolar points with
shape (M, 20, 2). We use bilinear sampling to sample image
features at the epipolar points, giving us combined epipolar
features of shape (M, 20, 512) per ray. This becomes the
input to our epipolar feature transformer.

Epipolar Feature Transformer. EFT aggregates the
epipolar features from a single ray with a series of three
transformers to predict an RGB pixel color and a 256-
dimension feature. We visualize the EFT in Figure 1. We
show details of the transformers in Table 1. All transformer
encoders have hidden and output dimensions of 256. Both
the depth aggregator and view aggregator transformers are
followed by a weighted average operation, where the output
features from the transformers are multiplied by a weight,
which sums to 1 along the sequence length dimension. The
relative weights are predicted by a linear layer before pass-

Input Views

(B, M, D, F)

Epipolar Feature Transformer

V K Q

Query View
Epipolar lines for query ray

V K Q

V K Q

(B, M, D, F)

(B, M, F)

(B, 3) (B, 256)
RGB Features

Depth Aggregator

View Aggregator

Init Transformer

Query Ray

Figure 1. Epipolar Feature Transformer We show a diagram of
EFT. This module processes each query ray independently, using
a transformer to aggregate the projected features across views and
across possible depths. For each ray, the output is a predicted RGB
color (used as a baseline prediction method), and a pixel-aligned
feature (used as conditioning in the diffusion model).

ing through softmax. This effectively performs weighted
averaging along the sequence dimension.

Table 1. EFT Configuration. We use default PyTorch hyperpa-
rameters for each layer. B is number of rays. M is the number of
input views. D is the number of epipolar feature samples along the
ray. D is 20.

Transformer Layers Sequence Dims / Dim Output Shape

Init Transformer Transformer Encoder x4 M (B, M, D, 256)

Depth Aggregator
Transformer Encoder x4 D (B, M, D, 256)
Linear + Softmax D (B, M, D, 1)
Weighted Average (B, M, 256)

View Aggregator
Transformer Encoder x4 M (B, M, 256)
Linear + Softmax M (B, M, 1)
Weighted Average (B, 256)

Color Branch Linear (B, 3)

The inputs to the transformer are the sampled fea-
tures concatenated with additional ray and depth encodings.
Given a point along the query ray rq at depth d, we denote
by pmd its projection in the mth context view. In addi-
tion to the pixel-aligned feature fmd (described in previous
paragraph), we also concatenate encodings of the query ray
rq , the depth d, and the ray rmd connecting the mth cam-
era center to the 3D point. We use plucker coordinates to
represent each ray, and compute harmonic embeddings for
each to (rq, rmd,d) (using 6 harmonic functions) before
concatenating them with fmd to form the input tokens to
the transformer.

Training Procedure. We can train the color branch of
EFT as a standalone novel view synthesis baseline. In our
work, EFT is jointly trained with VLDM. Please see sup-
plementary Section 2.2 for details.

2.2. View-conditioned Diffusion Model

Overview. View-conditioned diffusion model is a latent
diffusion model that conditions on a pixel-aligned feature
grid y.

Notation: Let ϵϕ be the denoising UNet, E be the VAE
encoder, and D be the VAE decoder.

VAE. We use the VAE from Stable Diffusion [5]. We use
the provided v1-3 weights and keep the VAE frozen for all
experiments. We use (256, 256, 3) RGB images as input,
and the VAE encodes them into latents of shape (32, 32, 4).
We refer readers to [5] for more details.

Denoising UNet. Our 400M parameter UNet roughly fol-
lows [6]. We construct our UNet using code from [10] with
the parameters in Table 2.

Table 2. UNet Parameters. We provide parameters for our UNet.

Parameter Value
channels 4
dim 256
dim mults (1,2,4,4)
num resnet blocks (2,2,2,2)
layer attns (False, False, False, True)
cond images channels 256

The UNet comprises of 4 down-sampling blocks, a mid-
dle block, and 4 up-sampling blocks. We show the input and
output shape for the modules of the UNet in Table 3. We
refer readers to [10] for UNet details. We disable all text
conditioning and cross attention mechanisms; instead, we
concatenate EFT features, y, with image latents, zt. These
EFT features are computed for the of 32 × 32 rays corre-
sponding to the patch centers.

Training Procedure. We train with batch size of 2, ran-
domly chosen number of input views between 2-5, and
learning rate of 5e-5 using Adam optimizer with default hy-
perparameters for 100K steps. We optimize both the UNet
weights and also the EFT weights. We optimize the UNet
and feature branch of EFT with the simplified variational
lower bound [2]. We optimize the color branch of EFT with
pixel-wise reconstruction loss.

2.3. Diffusion Distillation

Overview. We optimize a 3D neural scene representation,
Instant NGP [4, 9], with our VLDM.

Notation: Let fθ be the volumetric Instant NGP renderer,
pϕ(z0:T |π, C) be the multi-step denoising process that esti-
mates ẑ0. Let Π be an instance-specific camera distribution.

Table 3. UNet Blocks. We outline the modules in our denoising
UNet.

Modules Block Output Shape

Input (B, 260, 32, 32)

Init. Conv InitBlock (B, 256, 32, 32)

Down 1 DownBlock (B, 256, 16, 16)

Down 2 DownBlock (B, 512, 8, 8)

Down 3 DownBlock (B, 1024, 4, 4)

Down 4 DownBlock (B, 1024, 4, 4)
Self-attention (B, 1024, 4, 4)

Middle MiddleBlock (B, 1024, 4, 4)

Up 1 UpBlock (B, 1024, 8, 8)
Self-attention (B, 1024, 8, 8)

Up 2 UpBlock (B, 512, 16, 16)

Up 3 UpBlock (B, 256, 32, 32)

Up 4 UpBlock (B, 256, 32, 32)

Final Conv. Conv2D (B, 4, 32, 32)

Instant NGP. We use the PyTorch Instant NGP imple-
mentation from [9]. We set scene bounds to 4 with desired
hashgrid resolution of 8,192. We use a small 3 layer MLP
with hidden dimension of 64 to predict RGB and density.
We do not use view direction as input.

Camera Distribution. Given a set of input cameras CI ≡
(πm) and a query camera πq , we first find the look-at point
Pat by finding the nearest point to all m + 1 rays origi-
nating from camera centers. Then, we fit a circle O in 3D
space with center being the mean of all camera centers. Let
the normal of circle O be n. To sample a camera, we first
sample a point Pi on O and jitter the angle between PatPi
and n by N (0, 0.17) radians to get jittered point P

′

i . We
then construct a camera π with center P

′

i looking at Pat.

Multi-step Diffusion Guidance. Given a rendered image
x0, we encode it to obtain z0. Then, we uniformly sample
t ∼ (0, T] and construct a noisy image latent zt. We per-
form multi-step denoising to obtain ẑ0 by iteratively sam-
pling ẑtk−1

∼ pϕ(ztk−1
|ẑtk , y) on an interval of time steps

T = (t1, ..., tk, t) using a linear multi-step method [3]. We
construct T by linearly spacing k + 1 time steps between
(0, t]. We define k with a simple scheduler:

k + 1 =

{
100t
T , if t ≤ T

2

50, if t > T
2

}
(7)

Finally, given ẑ0, we get the predicted image x̂0 =
D(ẑ0). We do not compute gradients through multi-step
diffusion and treat x̂0 as a detached tensor.

Distillation Details. We perform 3,000 steps of distilla-
tion, optimizing weights of the MLP θ with Adam optimizer
and learning rate 5e-4. During each step of diffusion distil-
lation, we sample π ∼ Π and render an image x0 = fθ(π).
For the first 1,000 steps, we compute rendering loss be-
tween fθ(π) and gψ(π|C). During the remaining steps,
we compute loss between fθ(π) and x̂0 and use weight-
ing wt = 1 − ᾱt. To avoid out-of-memory error, we ren-
der images at reduced resolution (128, 128) and apply bilin-
ear up-sampling before performing multi-step diffusion. In
addition, we compute rendering loss between fθ(πm) and
xm on all m input images. Optimizing a single scene takes
roughly 1 hour on an A5000 GPU.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,
2016. 2

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 2020. 1, 3

[3] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In
ICLR, 2022. 3

[4] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 2022. 3

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 3

[6] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. In
NeurIPS, 2022. 3

[7] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 1

[8] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Generalizable patch-based neural render-
ing. In ECCV, 2022. 2

[9] Jiaxiang Tang. Torch-ngp: a pytorch implementation of
instant-ngp, 2022. https://github.com/ashawkey/torch-ngp.
3

[10] Phil Wang. Implementation of imagen, google’s
text-to-image neural network, in pytorch, 2022.
https://github.com/lucidrains/imagen-pytorch. 3

	. Background: Denoising Diffusion
	. Implementation Details
	. Epipolar Feature Transformer
	. View-conditioned Diffusion Model
	. Diffusion Distillation

