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Table 1. Setting comparison between USOD methods. “F” and “U” indicate fully-supervised and unsupervised pre-training. “IN” and
“CS” are ImageNet [3] and CityScape [2] datasets, respectively.

Method Training set Input Encoder Pre-train Saliency cues Train time
EDNS [21] DUTS-TR 352× 352 VGG-16 F-IN [15, 17, 27] >8h
DCFD [9] DUTS-TR – ResNet-50 F-IN [8] –

Ours DUTS-TR 320× 320 ResNet-50 U-IN No 4.5h
SBF [18] MSRA-B 224× 224 VGG-16 F-IN [16, 19, 20] >3h
MNL [22] MSRA-B 425× 425 ResNet-101 F-IN [6, 8, 16, 27] >4h
USPS [11] MSRA-B 432× 432 ResNet-101 F-CS [6, 8, 16, 27] >30h
DCFD [9] MSRA-B – ResNet-101 F-CS [8] –
A2S [25] MSRA-B 320× 320 ResNet-50 U-IN No 1h

Ours MSRA-B 320× 320 ResNet-50 U-IN No 1.3h

Setting comparison between USOD methods. As
listed in Tab. 1, our method achieves better performance un-
der disadvantage settings. Specifically, the 3202 input of our
method is small than most USOD methods, such as 4252

for MNL [22] and 4322 for USPS [11]. Moreover, we use
ResNet-50 [4] as backbone, which is a weakened version of
ResNet-101 used in many USOD methods [9,11,22]. As for
pre-training, most existing methods employed the encoders
pre-trained with manual annotations of some close-related
datasets, such as ImageNet [3] for object recognition and
Cityscape [2] for semantic segmentation. Such setting in-
dicates that they benefit from the semantic knowledge of
manual annotations, which violates the semantic-agnostic
definition of the SOD task. On the contrary, the encoder of
our method is pre-trained without using any human annota-
tion. It means that no semantic knowledge is involved in the
whole training process, which accords with the semantic-
agnostic definition. Last, even excluding the additional time
of existing methods [11, 18, 21, 22] to extract salience cues
using traditional methods, the training time of our method
is much less than that of most previous methods.

Qualitative comparison of different loss. In our
manuscript, we exhibit the quantitative results of different
losses in ablation study A. Here, we provide a qualitative

comparison in Fig. 1. Our baseline A1 can accurately local-
ize salient objects in images, but loses many details. Trained
using the proposed losses, the network mines more detailed
saliency knowledge progressively and thus precisely pre-
dicts the saliency boundaries.

Visualization of the learned saliency. In, Fig. 2, we
visualize the learned saliency maps in our method during
the training process. In the initial stage, our method is able
to precisely localize the salient object based on the initial
saliency cues, however, some small patches may still be
misclassified. After subsequent tuning process, our method
can learn more precise saliency knowledge and thus pro-
duce a high-quality pseudo label.

Effect of hyperparameters. The performance of our
framework is affected by several hyperparameters, includ-
ing α, λc, λb, λm, and k. We vary these hyperparameters
and exhibit their results in Tab. 2. The results prove that
the values α = 200, λc = 1, λb = 0.05 and λm = 1 work
best in practice. Our framework is robust to α ∈ [100, 300],
and reports the best performance for α = 200. Moreover,
our framework achieves comparable performance for vari-
ous λc and λm values within [0.5, 1.5]. Furthermore, our
framework is sensitive to λb. Although we observe robust
performance for λb ∈ [0.03, 0.07], λb outside this range
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Figure 1. Saliency predictions of our method with different losses.
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Figure 2. The learned saliency maps during training.

(e.g., λb = 0.01) seems to induce significant performance
drops. We attribute this performance drop to the weakened
effect of pixels with similar appearances.

Loss for training extra saliency detectors. For fully-
supervised SOD methods, there are many choices for the
loss functions, such as BCE loss [5, 23], BCE+IOU loss
[12, 24], CTLoss [1, 26], BIS(BCE+IOU+SSIM) loss [13].
We employ these losses to train our saliency detector with
the generated pseudo labels, as exhibited in Tab. 3. In sum-
mary, training our detector with IOU loss achieves the best
results compared to other losses. BCE and CTLoss pro-
vide pixel-wise supervised signals, which means that train-
ing with these losses is easy to overfit the noises and thus

Table 2. Effect of different hyperparameters.

Parameter Value Fβ ↑ Eξ ↑ M ↓
100 .911 .932 .046
150 .914 .937 .043

α 200 .917 .945 .038
250 .915 .942 .039
300 .914 .943 .039
0.5 .911 .937 .042
0.7 .915 .942 .039

λc 1 .917 .945 .038
1.2 .914 .943 .038
1.5 .913 .941 .039

0.01 .869 .915 .054
0.03 .910 .938 .042

λb 0.05 .917 .945 .038
0.07 .914 .945 .039
0.09 .908 .942 .040
0.5 .915 .943 .038

0.75 .915 .945 .038
λm 1 .917 .945 .038

1.25 .915 .943 .039
1.5 .914 .941 .039
3 .913 .937 .042

k 5 .917 .945 .038
7 .914 .943 .039

Table 3. Different losses for the second stage.

Loss DUT-OMRON ECSSD
Fβ ↑ Eξ ↑ M ↓ Fβ ↑ Eξ ↑ M ↓

BCE .708 .834 .066 .891 .924 .047
BCE+IOU .726 .846 .065 .894 .923 .048

BIS .716 .838 .067 .886 .919 .049
CTLoss .743 .862 .061 .907 .914 .057

IOU .745 .863 .061 .916 .938 .044

degrade the generalization ability of our detector. Similarly,
SSIM is based on regional statistics and thus is sensitive
to noisy regions in pseudo labels. Unlike the above losses,
IOU is robust to pixel-level or region-level noises because
it is based on global statistics of saliency predictions.

Necessity of unsupervised SOD. Ideally, a well super-
visedly trained class-agnostic SOD model can handle all
scenarios, whereas is hard to obtain in practical. First, SOD
methods trained on datasets with limited classes may not
perform well on unseen classes, even if class labels are not
used during training. Second, SOD methods trained on a
certain style of images (e.g., natural images) do not perform
well on other styles of images (e.g., medical images). To
prove this point, we show the results of supervised LDF [14]



Table 4. Performance of SOD methods on X-ray images.

Training set Fβ ↑ Eξ ↑ M ↓
LDF [14] DUTS-TR .296 .508 .315

Ours DUTS-TR .530 .664 .309
Ours* DUTS-TR+X-ray .924 .943 .056

Image GT LDF Ours Ours*

Figure 3. Examples of the predicted saliency maps.

and our unsupervised method on chest X-ray images 1 in
Tab. 4 and Fig. 3. It proves that SOD methods trained
on existing SOD datasets perform poorly on X-ray images,
while our unsupervised method can achieve significant per-
formance without using extra human annotations for spe-
cific scenarios. Third, many weakly-supervised methods
leverage USOD methods as pre-processing or auxiliary loss,
such as [7, 10]. In addition, our method can be considered
as a novel self-supervised learning paradigm.

References
[1] Zixuan Chen, Huajun Zhou, Jianhuang Lai, Lingxiao Yang,

and Xiaohua Xie. Contour-aware loss: Boundary-aware
learning for salient object segmentation. IEEE Transactions
on Image Processing, 30:431–443, 2020. 2

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Com-
puter Vision and Pattern Recognition, 2016. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[5] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,
Zhuowen Tu, and Philip HS Torr. Deeply supervised salient
object detection with short connections. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3203–3212, 2017. 2

[6] Bowen Jiang, Lihe Zhang, Huchuan Lu, Chuan Yang, and
Ming-Hsuan Yang. Saliency detection via absorbing markov
chain. In Proceedings of the IEEE international conference
on computer vision, pages 1665–1672, 2013. 1

[7] Seungho Lee, Minhyun Lee, Jongwuk Lee, and Hyunjung
Shim. Railroad is not a train: Saliency as pseudo-pixel su-

1https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html

pervision for weakly supervised semantic segmentation. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 5495–5505, 2021. 3

[8] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and
Ming-Hsuan Yang. Saliency detection via dense and sparse
reconstruction. In Proceedings of the IEEE international
conference on computer vision, pages 2976–2983, 2013. 1

[9] Xiangru Lin, Ziyi Wu, Guanqi Chen, Guanbin Li, and
Yizhou Yu. A causal debiasing framework for unsupervised
salient object detection. In Thirty-sixth AAAI conference on
artificial intelligence, 2022. 1

[10] Wenfeng Luo, Meng Yang, and Weishi Zheng. Weakly-
supervised semantic segmentation with saliency and in-
cremental supervision updating. Pattern Recognition,
115:107858, 2021. 3

[11] Duc Tam Nguyen, Maximilian Dax, Chaithanya Kumar
Mummadi, Thi Phuong Nhung Ngo, Thi Hoai Phuong
Nguyen, Zhongyu Lou, and Thomas Brox. Deepusps:
Deep robust unsupervised saliency prediction with self-
supervision. arXiv preprint arXiv:1909.13055, 2019. 1

[12] Youwei Pang, Xiaoqi Zhao, Lihe Zhang, and Huchuan Lu.
Multi-scale interactive network for salient object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9413–9422, 2020. 2

[13] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,
Masood Dehghan, and Martin Jagersand. Basnet: Boundary-
aware salient object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 7479–7489, 2019. 2

[14] Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang,
and Qi Tian. Label decoupling framework for salient ob-
ject detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13025–
13034, 2020. 2, 3

[15] Yichen Wei, Fang Wen, Wangjiang Zhu, and Jian Sun.
Geodesic saliency using background priors. In European
conference on computer vision, pages 29–42. Springer, 2012.
1

[16] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical
saliency detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1155–1162,
2013. 1

[17] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and
Ming-Hsuan Yang. Saliency detection via graph-based man-
ifold ranking. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3166–3173,
2013. 1

[18] Dingwen Zhang, Junwei Han, and Yu Zhang. Supervision by
fusion: Towards unsupervised learning of deep salient object
detector. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 4048–4056, 2017. 1

[19] Jianming Zhang and Stan Sclaroff. Saliency detection: A
boolean map approach. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 153–160, 2013.
1

[20] Jianming Zhang, Stan Sclaroff, Zhe Lin, Xiaohui Shen,
Brian Price, and Radomir Mech. Minimum barrier salient



object detection at 80 fps. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1404–1412,
2015. 1

[21] Jing Zhang, Jianwen Xie, and Nick Barnes. Learning
noise-aware encoder-decoder from noisy labels by alternat-
ing back-propagation for saliency detection. In European
conference on computer vision, pages 349–366. Springer,
2020. 1

[22] Jing Zhang, Tong Zhang, Yuchao Dai, Mehrtash Harandi,
and Richard Hartley. Deep unsupervised saliency detection:
A multiple noisy labeling perspective. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9029–9038, 2018. 1

[23] Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang,
and Xiang Ruan. Amulet: Aggregating multi-level convo-
lutional features for salient object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 202–211, 2017. 2

[24] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao,
Jufeng Yang, and Ming-Ming Cheng. Egnet: Edge guidance
network for salient object detection. In Proceedings of the
IEEE International Conference on Computer Vision, pages
8779–8788, 2019. 2

[25] Huajun Zhou, Peijia Chen, Lingxiao Yang, Xiaohua Xie, and
Jianhuang Lai. Activation to saliency: Forming high-quality
labels for unsupervised salient object detection. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2022.
1

[26] Huajun Zhou, Xiaohua Xie, Jian-Huang Lai, Zixuan Chen,
and Lingxiao Yang. Interactive two-stream decoder for
accurate and fast saliency detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9141–9150, 2020. 2

[27] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun.
Saliency optimization from robust background detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2814–2821, 2014. 1


