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In this supplementary material, we provide additional
details, including the details of the encoder-decoder net-
work, the details of different uncertainty estimation meth-
ods, more ablation studies and visualization results on
BSDS500 [1] and Multicue [6] dataset.

A. Details of the Encoder-decoder Network
The encoder of the proposed UAED is EfficientNet [11],

whose details can be found in Table 1. It contains eight
stages, and involves five up-sampling operations. The size
of the final feature map is reduced to 1/32 of the input im-
age size. We store the first, the third, the fourth, the sixth,
and the eighth as multi-scale features for objects with dif-
ferent sizes that are further fed into the following decoders.
The structure of the decoder is UNet++ which is the same
as the initial design [15].

B. Different Uncertainty Estimation Methods
We explore different uncertainty estimation methods in-

cluding MC Dropout [3], RBUE [12], generative model
based methods [2, 13], probabilistic embeddings [8], and
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our proposed UAED. The baseline model is a deterministic
encoder-decoder structure shown in Figure 1 (a), containing
an encoder, a decoder and a prediction head.

MC dropout [3] captures the epistemic (model) uncer-
tainty by sampling from the Bernoulli distribution with a
defined probability to decide whether a neuron is valid and
operates dropout [10] both the training and test process. By
randomly sampling valid neurons, the model acquires dif-
ferent predictions.

RBUE [12] also models epistemic (model) uncertainty.
Since not all networks contain Dropout layers, RBUE [12]
adds a weight randomly sampling from a uniform distribu-
tion for the case when the value is lower than zero in the
ReLU activation function. RBUE is easy to implement and
does not bring learnable weights.

Generative model based methods, including CVAE-
based models [9] and EBM-based models [2], learn low-
level latent space to capture randomness caused by the
data. As shown in Figure 1 (b), those methods sample fea-
tures from the latent space learned by the generative mod-
els such as CVAE and EBM, and concatenate the features
from the label space and encoder. Specifically, CVAE-based
model [13] constructs a prior network learning from the im-

Table 1. The detailed network structure of the encoder EfficientNet.
Stage Layer Name Kernel Stride Channel Input→ Output Normalization Activation

1 conv stem 3× 3 2 3→64 BN -

2 MBConvBlock0 3× 3; 1× 1; 1× 1; 1× 1 1 64→64→16→64→32 BN Swish
MBConvBlock1-3 3× 3; 1× 1; 1× 1; 1× 1 1 32→32→8→32→32 BN Swish

3 MBConvBlock4 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1; 2; 1; 1; 1 32→192→192→8→192→48 BN Swish
MBConvBlock5-10 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1 48→288→288→12→288→48 BN Swish

4 MBConvBlock11 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1; 2; 1; 1; 1 48→288→288→12→288→80 BN Swish
MBConvBlock12-17 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1 80→480→480→20→480→80 BN Swish

5 MBConvBlock18 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1; 2; 1; 1; 1 80→480→480→20→480→160 BN Swish
MBConvBlock19-27 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1 160→960→960→40→960→160 BN Swish

6 MBConvBlock28 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1 160→960→960→40→960→224 BN Swish
MBConvBlock29-37 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1 224→1344→1344→56→1344→224 BN Swish

7 MBConvBlock38 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1; 2; 1; 1; 1 224→1344→1344→56→1344→384 BN Swish
MBConvBlock39-50 1× 1; 5× 5; 1× 1; 1× 1; 1× 1 1 384→2304→2304→96→2304→384 BN Swish

8 MBConvBlock51 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1 384→2304→2304→96→2304→640 BN Swish
MBConvBlock52-54 1× 1; 3× 3; 1× 1; 1× 1; 1× 1 1 640→3840→3840→160→3840→640 BN Swish
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Figure 1. The structures for different uncertainty estimation methods. (a) Baseline. (b) Generative model based method. (c) Probabilistic
embeddings. (d) Our proposed UAED.

age and a posterior network learning from the image-label
pairs. EBM-based model [14] estimates the prior and the
posterior distribution by an energy function. The energy
function is learned by a neural network which constitutes
several fully connected layers. The sampling from the la-
tent space brings randomness and results in different pre-
dictions.

The structure of probabilistic embedding is shown in
Figure 1 (c), where two separate decoders are fused into a
single prediction header. Compared to our proposed UAED
in Figure 1 (d), the probabilistic embedding regards the de-
coded features as Gaussian distribution rather than the la-
bels in label space.

C. More Ablation Studies

In this section, to further understand the performance
gain of our proposed UAED, we conduct more ablation
studies to test different design variants.

First, to validate the effectiveness of regarding the la-
bels as distributions, we simply use the averaged probability
map as a soft and continuous label ranging [0, 1] for train-
ing BCE loss and achieve a score of 0.792 (ODS), 0.807
(OIS), and 0.842 (AP) under the single-scale setting. The
performance is much lower that the corresponding encoder-
decoder model, which can demonstrate that treating the pre-
diction as a learnable Gaussian distribution can capture the
label ambiguity efficiently.

Moreover, instead of using two decoders to estimate
the mean and variance of predicted labels separately, we
design to use a single decoder by doubling the number
of channels of the output layer for predicting the mean
and variance. The result is 0.828 (ODS), 0.845 (OIS),
and 0.890 (AP), which is slightly lower than our UAED
(ODS=0.829, OIS=0.847, AP=0.892). Moreover, compared
with single-decoder design, our UAED adds only a negligi-
ble GPU memory consumption (from 11.8G to 12G), and
slows down the inference only slightly (from 19 FPS to 17
FPS), so we choose two separate decoders for better perfor-

mance.

D. More Visualization Results
In this section, we report more qualitative results on

BSDS500 [1] and Multicue [6] dataset. In Figure 2, we
present more visualizations of the proposed UAED on
BSDS500 [1]. Figure 3 shows the visual results compared
with other approaches for BSDS500 [1]. Moreover, Fig-
ure 4 depicts qualitative results for Multicue edge and Mul-
ticue boundary [6].

Besides, our method has the sampling ability, which can
be found in Figure 5. From the left to right, we can observe
that each prediction has a slightly different but reasonable
appearance.
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(a) Image (b) Ground truth (c) UAED (Ours) (d) UAED after NMS

Figure 2. Qualitative results of proposed UAED on BSDS500.



(a) Image (b) Ground truth (c) RCF [5] (d) BDCN [4] (e) EDTER [7] (f) UAED (Ours)

Figure 3. Qualitative comparisons on the testing set of BSDS500.



(a) Input (b) GT-Edge (c) UAED-Edge (d) GT-Boundary (e) UAED-Boundary

Figure 4. Qualitative results on Multicue Edge and Multicue Boundary.



(a) µ+ 3σ (b) µ+ 2σ (c) µ (e) µ− 2σ (d) µ− 3σ

Figure 5. Different samplings on the testing set of BSDS500.
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