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A. Unified vs. Modality-Specific
We first provide more justification for unifying training

of two tasks, text-to-motion, and audio-to-motion, as op-
posed to training modality-specific models.

A.1. Unification Brings Smooth Transition of Gen-
erated Motion between Modalities

We justify why we choose to unify the two tasks in one
shared model by showing qualitative examples of driving
motion sequences with both text descriptions and audio se-
quences as input and providing a brief analysis based on
the experimental results. To evaluate, we first feed text de-
scriptions to our model to generate a motion sequence, then
feed both an audio clip and the last 8 tokens of the gener-
ated motion sequence as primitive to our model to generate
subsequent motion sequences. By feeding both the audio
sequence and the last tokens of the motion sequence, we
are hoping that the generated motion will be conditioned
on both audio input and motion primitives, simultaneously,
and then a smooth transition can be obtained from one to
another naturally.

Qualitative Examples Fig. 1 shows results of much more
complex motion sequences driven by text descriptions and
audio clips sequentially. There are 3 regions shown in
each row of the figure. For Text-to-Motion region, the mo-
tion is controlled by text description dominantly, while for
Audio-to-Motion region, the motion is driven by audio clip
mainly. The Transition region, in the middle of each row,
shows how the text-driven motion sequence smoothly tran-
sits to an audio-driven sequence without introducing addi-
tional motion in-between modules.

The qualitative results suggest that complex scenarios
correlated with multimodal inputs could be generated by
our UDE model without introducing additional motion in-
between modules. We show that by feeding the multimodal
input to our model sequentially, and by conditioning the
current task on previously predicted tokens, we can gener-
ate more complex motion sequences smoothly transit from

one scenario(text) to another(audio).
Please refer to our supplementary video for better visual-

ization of the results of such mixed input driving tasks.

Analysis Sec.A.1 shows why we propose to unify these
tasks visually, we give a brief analysis of this problem
here. As stated in sec. A.1, we feed text to gener-
ate motion sequence at first, which we denote as x̃t =
DDMD(EUTT (e

t)), here DDMD(·) is the Diffusion Mo-
tion Decoder x̃t = DDMD(zq), zq is the motion token
sequence, and EUTT (·) is the Unified Token Transformer
which maps embedding to motion token sequence as zq =
EUTT (e

t). Let’s denote the last n tokens of zq as zq,T−n:T ,
where T is the length of the token sequence. Then we feed
an audio clip and the last n tokens zq,T−n:T to generate mo-
tion sequence as x̃a = DDMD(EUTT (e

a, zq,T−n:T )). In
this step, we notice that the input to UTT EUTT (·) has two
items, 1) the first item is the embedding of audio clip ea, and
2) the second term is the last n tokens zq,T−n:T which cor-
responds to text description. If we adopt a modality-specific
paradigm, EUTT (e

a, zq,T−n:T ) will give unexpected results
because EUTT (·) is trained either on text modality only or
audio modality only. However, in our setting, the input to
EUTT (·) covers two modalities, the embedding ea corre-
sponds to audio modality, and zq,T−n:T corresponds to text
modality because it is obtained by text description, and vise
versa. To conclude, the codebook corresponding to different
scenario will not be shared in Motion Quantization and Uni-
fied Token Transformer modules, hindering the token pre-
diction conditioned on cross modality scenario. As a con-
sequence, a model trained on a modality-specific paradigm
will not perform well in generating smoothly transited mo-
tion driven by one modality to another.

A.2. Unification Brings Strong Results & Engineer-
ing Efficiency

Here we provide more quantitative analysis. To compare,
we also train modality-specific models on text-driven and
audio-driven tasks, respectively, and separately. We keep
the model architecture fixed for both Modality-Agnostic
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Figure 1. Examples of unified driven samples.Each row shows a motion sequence driven by a text description and an audio clip se-
quentially. The text descriptions are fed to UDE first to generate a text-conditioned motion sequence. Then the audio clip and the last 8
tokens of text-conditioned motion are fed to UDE to generate an audio-conditioned motion sequence. For each row, we extracted 10 frames
sequentially to show the transition between text-driven and audio-driven sequences. Demo videos could be found in our supplementary
materials.

Figure 2. User study: We generate samples using different models from same text prompt and audio clip, respectively. And the users are
asked to select the most corresponding ones.

Transformer Encoder(MATE), and Unified Token Trans-
former(UTT), and we don’t train them with Diffusion Mo-
tion Decoder(DMD) because we don’t want to introduce di-
versity at this time for a fair comparison. Therefore, we
just adopt the pretrained VQ-Decoder in Motion Quanti-
zation(MQ) stage. For both text-to-motion and audio-to-
motion tasks, we follow the same optimization strategy de-
scribed above and trained 300 epochs for each task. Dur-
ing the evaluation, we follow the deterministic token pre-
diction strategy described above, where we don’t inject
z ∼ N (0, I) to UTT because diversity is not desired at
this stage. We evaluate the performance of our UDE model
over the same metrics as above: 1) For text-to-motion, we
evaluate our method on Text Retrieval Acc., FID scores, and
Diversity. 2) For audio-to-motion, we evaluate our method
on Beat Align Score, FID, and Diversity, respectively.

Tab. 1 summarizes the quantitative results. As we can
observe from the results, for the text-to-motion task, train-
ing our model on text-to-motion dataset only does not bring
obvious performance gain. On the contrary, training a text-
only model brings even worse Top-1 Acc. and FIDs no-
ticeably. For Top-1 Acc. text-only training brings around
5% accuracy drop against unified training (8.81 to 7.77). If
we take a look at the FIDs, text-only training also brings
worse results. A similar conclusion could be drawn from
the audio-to-motion task. If we train an audio-only model,
it does not improve performance. For Beat Align, unified
training shows a slightly better beat synchronization prop-
erty. For feature-wise quality and diversity, audio-only and
unified models draw a tie. For audio only model, it has
better performance on FIDm and Divm, while for the uni-
fied model, better kinetic quality FIDk and kinetic diversity
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Figure 3. Diversity of Text-to-Motion. We show more qualitative results on text-to-motion tasks. For each column, we show 4 samples
driven by the same text description with high diversity. We adjust the trajectory of some motion sequences for better visualization. Demo
videos could be found in our supplementary materials.
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Figure 4. Diversity of Audio-to-Motion. We show more qualitative results on audio-to-motion tasks. For each column, we show 4 samples
driven by the same audio clip with high diversity. We show samples driven by 6 audio clips with different genres. Demo videos could be
found in our supplementary materials.

Divk are obtained.

This study suggests that our model achieves competitive
performance on both text-driven and audio-driven scenarios
when trained in a unified paradigm, compared with train-
ing on the uni-task paradigm. With the performance main-
tained, our method successfully puts these two driven tasks
to one unified solution. Through unification, engineering
efficiency is improved because only one model needs to be
maintained and improved for possible future applications.
This suggests there is potential for unification on multi-
modal human motion generation.

B. Detail of Model Architecture

We describe the detail architecture of Unified
Transformer Encoder(UTT) and Diffusion Motion
Decoder(DMD) here. Fig. 5 describes the architecture of
UTT. We describe the Unified Token Transformer module
and the conditional discriminator in an end-to-end manner,
and the transformer encoder layer with causal self-attention
is demonstrated at the bottom panel of Fig. 5. The detailed
architecture of DMD is shown in Fig. 6, where the left
panel illustrates the token transformer module, and the right
panel shows the diffusion transformer decoder module.



Method
Text-to-Motion Audio-to-Motion

Text Retrieval Acc. FID Diversity Beat Align ↑ FID Diversity
Top-1 Acc. ↑ Top-5 Acc. ↑ FIDk ↓ FIDm ↓ Divk ↑ Divm ↑ FIDk ↓ FIDm ↓ Divk ↑ Divm ↑

text only 7.77 26.01 31.73 5.69 4.42 6.96 - - - - -
audio only - - - - - - 0.2231 39.27 11.65 5.68 8.03

unified 8.11 25.01 27.66 4.92 4.28 6.77 0.2268 28.44 15.70 6.13 4.07

Table 1. Ablation on Unification v.s. Modality-Specific. We explore our method trained in a unified paradigm against that trained in
a modality-specific paradigm. All three models, use exactly the same architecture, and we don’t inject any random term to eliminate the
influence of diversity. For text only and audio only, they are trained on HumanML3D and AIST++ datasets solely.
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Figure 5. Architecture of UTT. Bottom panel shows detail of
the transformer encoder layer in middle panel, where a causal
self-attention is adopted in replacing with conventional full self-
attention. The top panel is the detail of the conditional discrim-
inator. The global embedding and predicted token sequences are
transformed and summed together and fed to a transformer en-
coder to get a patch-wise validity score.

Specifically, given the predicted token sequence, the token
transformer first encodes it to a sequential embedding by
stacked transformer encoder layers. Then we convert the
sequential embedding to a single embedding by applying a
max-pooling operation along the temporal dimension. This
single embedding is then adopted as condition embedding.
For every step of reversed diffusion, we feed the condition
embedding, as well as the timestep embedding, and the
latent to the diffusion transformer decoder, and estimate the
noise ϵt. We repeat this reversed diffusion step 1000 times
to get the final denoised sample X0.
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Figure 6. Architecture of DMD. Left panel shows the detail of
Token Transformer Encoder. The predicted token sequences are
fed to this module, and the sequential embedding is obtained. Then
we get a single embedding by max-pooling operation along the
temporal dimension. This single embedding is used as a condition
at the Diffusion Transformer Decoder module. Right panel shows
the detail of the Diffusion Transformer Decoder. We feed the con-
dition embedding, timestep embedding, and latent to it, and the
gaussian noise ϵt is obtained at each reversed diffusion step.

C. User Study

We also conducted a user study to evaluate the quality of
our method compared with prior works. For text-to-motion
task, we generate samples conditioned on same text descrip-
tion using different models, and users are asked to tell which
sample matches best to the description. Same evaluation
strategy is followed for audio-to-motion task. The results
of user study are shown in Fig. 2. For text-to-motion task,
among all the samples, 65% of ours matches best to the de-
scription, which is 35% higher than the second best method.
For audio-to-motion task, ours also achieves 61.5% best ra-
tio. The user study suggests that our method outperforms
existing methods in terms of human perception.

D. More Qualitative Examples

We show more qualitative examples of our method on
Text-to-Motion and Audio-to-Motion tasks, respectively.
Specifically, we demonstrate the diversity of motion sam-
ples generated by our method. Fig. 3 shows more results on
the Text-to-Motion task. In the figure, each column repre-
sents 4 samples driven by the same text description. We ap-
propriately adjust the trajectory of some samples for better
visualization, so the poses will not clutter together. Fig. 4
shows more results on the Audio-to-Motion task. Similarly,



we show 4 samples driven by the same audio clip in the
same column. And we adjust the trajectory of each pose
to make them in a two-row formation. As can be observed,
our method achieves diversity in both text-driven and audio-
driven scenarios, while maintaining semantic correlation.
We also provide multiple demonstration videos in our sup-
plementary materials on both text-to-motion and audio-to-
motion tasks.


