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This supplementary material contains additional details
of the main manuscript. Section 1 presents additional
details of the models and training strategies. Section 2
complements more experiments not included in the main
manuscript. Section 3 shows more visualization results to
prove the effectiveness of UniDistill.

1. Details of Models and Training
To prove the effectiveness of UniDistill, we introduce

BEVDet, CenterPoint and BEVFusion as the camera based,
LiDAR based and LiDAR-camera based detectors. For
BEVDet, the features of input images are firstly extracted
by the backbone of ResNet-50 and then projected to BEV
through LSS [4]. We set the projected features to be the
low-level BEV features F low

cam . With respect to CenterPoint,
the input LiDAR points are distributed to regular voxels
and the features of each voxel are extracted by 3D convo-
lution. Then, the features of voxels in the same column
are concatenated and we set the result as F low

ldr . BEVFusion
builds on the above detectors by concatenating F low

cam with
F low

ldr and then processing it with a fully convolutional net-
work (FCN). The output features are set to be F low

fuse . The
following steps are the same for different detectors, where a
FCN follows as an encoder to produce F high and then a de-
tection head of CenterPoint generates classification and re-
gression heatmaps. These heatmaps are used to form F resp.

For all detectors, during training, the detection head will
calculate a classification loss LCls and a regression loss LReg
that are combined to form the detection loss LDet. In Section
4.2 of the main manuscript, to help the detectors perform
better, we use auto-scaling to balance the scales between
LCls and LReg but turn it off in Section 4.3 for efficiency.

The training of detectors is finished on 20 GeForce RTX
2080Ti GPUs. These GPUs are distributed on 5 machines,
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Table 1. Comparison between UniDistill and BEVDepth on testing
dataset to show the advantages of knowledge distillation. “L” and
“C” represent LiDAR and camera.

Method
Teacher

Modality
mAP ↑ mASE ↓ mAOE ↓ NDS ↑

Baseline - 26.4 26.6 55.8 36.1
BEVDepth [2] - 28.4 26.3 55.3 37.7

UniDistill L 28.9 25.9 51.4 38.4
UniDistill L+C 29.6 25.7 49.2 39.3

where each machine has 4 GPUs, so that we adopt dis-
tributed training. Because of the limited memory, each GPU
is distributed with 1 training sample.

2. Complementary Experiments
In this section, experiments not included in the main

manuscript are complemented. In Section 2.1, UniDistill is
compared with BEVDepth [2] and MonoDistill to show its
advantages. In Section 2.2, the performance of UniDistill
on Waymo is evaluated to show its generalization to dif-
ferent datasets. In Section 2.3, we replace the detection
head with a TransFusion [1] based one and the backbone of
BEVDet to Swin Transformer [3] to show the generaliza-
tion to different architectures. In Section 2.4, more ablation
studies about the adaptive layers and feature distillation are
supplemented. In Section 2.5, the training time and memory
usage of UniDistill are listed.

2.1. Comparison with BEVDepth and MonoDistill

To transfer the depth knowledge of LiDAR points to
the camera based detector, which is BEVDet in our ex-
periments, UniDistill introduces knowledge distillation for
help. BEVDepth provides another approach for knowl-
edge transfer by supervising the depth prediction of LSS in
BEVDet with ground truth generated by projecting LiDAR
points to the perspective view. Therefore, we compare Uni-
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Table 2. Comparison between UniDistill and MonoDistill on
nuScenes test dataset. “L” and “C” represent LiDAR and camera.

Method Modality
Teacher

Modality
mAP ↑ mASE ↓ NDS ↑

MonoDistill
C L

23.2 28.7 34.3
UniDistill 28.9 25.9 38.4

Table 3. Analysis to show the generalization of UniDistill to
Waymo dataset. “L” and “C” represent LiDAR and camera.

Method Modality
Teacher

Modality
mAPL ↑ mAPH ↑ mAP ↑

UniDistill
L+C - 71.0 71.4 75.3

C - 22.3 33.0 34.5
C L+C 24.5 36.2 37.7

Distill with BEVDepth to show the advantages of knowl-
edge distillation. We build BEVDepth based on BEVDet by
combining the detection loss LDet with another depth pre-
diction loss LDepth and train it with the full training dataset.
The performance of BEVDepth on the testing dataset is in
Table 1. From the results, UniDistill helps BEVDet ob-
tain better performance than BEVDepth, showing the ad-
vantages of knowledge distillation.

MonoDistill is another knowledge distillation framework
that transfers the knowledge from a LiDAR-based teacher to
a camera-based student. It directly unifies the architecture
of the teacher and student by training the teacher with Li-
DAR points projected to the perspective view. Therefore,
we further compare UniDistill with MonoDistill and the re-
sults are listed in Table 2, showing the better performance
of UniDistill for the modality combination (C, L).

2.2. Generalization to Waymo

In the main manuscript, all experiments are conducted on
the nuScenes dataset. To show the generalization of UniDis-
till to different datasets, in this section, we further evaluate
its performance on Waymo dataset. Specifically, UniDis-
till is first trained on the Waymo-mini dataset for 18 epochs
and then tested on the whole validation set. The results in
distillation path (2) are listed in Table 3, showing the effec-
tiveness and generalization of UniDistill on Waymo.

2.3. Generalization to More Architectures

In the main manuscript, we set the detection head of all
detectors to be the same as that of CenterPoint. There-
fore, we substitute it with a TransFusion based one and re-
evaluate UniDistill to show the generalization of UniDistill
to other detection heads. The evaluation is conducted in dis-
tillation path (1) on the validation dataset and the modified
detectors are trained on 1/2 training dataset for efficiency.
Since the response distillation in UniDistill is not applica-
ble to the TransFusion head, we only leverage the feature

Table 4. Performance analysis to show the generalization of Uni-
Distill to TransFusion. “L” and “C” represent LiDAR and camera.

Method Modality
Teacher

Modality
mAP ↑ mASE ↓ NDS ↑

TransFusion [1]
L+C - 63.4 25.2 67.6

L - 58.5 27.2 63.4
UniDistill L L+C 60.9 25.9 65.9

Table 5. Analysis to show the generalization of UniDistill to Swin
Transformer. “L” and “C” represent LiDAR and camera.

Method Modality
Teacher

Modality
mAP ↑ mASE ↓ NDS ↑

UniDistill
L+C - 63.3 24.7 69.0

C - 27.8 27.6 36.0
C L+C 32.5 25.7 39.7

distillation and relation distillation for knowledge transfer.
The results in Table 4 reveal that UniDistill also improves
the performance of the student detector, showing its gener-
alization to different detection heads.

In addition, we substitute the ResNet-50 in BEVDet with
Swin Transformer to show the generalization of UniDistill
to different backbones. For efficiency, the modified detec-
tors are trained on 1/2 training dataset and then evaluated in
distillation path (2) on the validation dataset. The results in
Table 5 show that UniDistill improves the performance of
student detector and generalizes to different backbones.

2.4. Additional Ablation Studies

In Section 4.3.4 of the main manuscript, we conduct ex-
periments to show that when evaluating in distillation path
(3), the adaptive layers can avoid the performance degra-
dation of the student after knowledge distillation. Some
experiments in distillation path (4) are further designed to
show that when the teacher detector performs better than
the student, adopting the adaptive layers will decrease the
effectiveness of UniDistill. The results are listed in Table 6
and reveal that with the adaptive layers, the performance of
the student slightly decreases. Therefore, when the teacher
performs better than the student, there is no need to intro-
duce the adaptive layers.

We also compare the detection loss LDet with/without the
adaptive layers and the baseline is the student without Uni-
Distill. The results in Figure 1 show that with the adaptive
layers, although the detection loss is lower than the base-
line, it is always higher than that without the adaptive layers.
We think the problem results from that the adaptive layers
make it too free for the student to choose what to learn from
the teacher. However, since the teacher detector is strong
enough to instruct the student, directly aligning the features
of the student with teacher can help the student learn better.

In addition, since most of the ablation studies are con-



Figure 1. Illustration to show that the adaptive layers increase the
detection loss when the teacher performs better than the student.

Table 6. Ablation study in path (4) to show that the adaptive lay-
ers decrease the effectiveness of feature distillation and relation
distillation when the teacher detector performs better than student.

Method
LFea LRel

mAP ↑ mAVE ↓ NDS ↑ mAP ↑ mAVE ↓ NDS ↑
Baseline 20.3 95.2 33.1 20.3 95.2 33.1

With Adapt 20.7 91.4 33.9 21.2 89.6 34.2
W/O Adapt 21.1 88.5 34.3 21.7 84.5 35.0

ducted in path (4), we complement the ablation studies in
path (1) to improve the reliability. As in Section 4.3.1 of the
main manuscript, we compare the original feature distilla-
tion with two modified ones that align the low-level BEV
features (1) completely or (2) inside a Gaussian-like mask.
The results are listed in Table 7 and we can get the same
conclusion that feature distillation performs better when se-
lecting 9 crucial points for alignment.

2.5. Training Time and Memory Usage

In this section, the training time and memory usage of
detectors with/without UniDistill are listed. The detectors
are trained on 1 GeForce RTX 2080Ti GPU and the training
batch size is 1. For the training time, we list the average
time to calculate the training loss. With respect to memory
usage, we report the max allocated memory during training.
The results are illustrated in Table 8 and show that UniDis-
till will increase the training time and memory usage a lot.
Therefore, we plan to introduce the block-wise distillation
and other techniques to accelerate the training of UniDistill
and decrease its memory usage.

3. More Visualization Results
In this section, we provide more visualization results to

show the effectiveness of UniDistill. For the response fea-
tures of one teacher detector and one student with/without
UniDistill, we calculate the mean along the channel dimen-
sion and visualize them. The results of the LiDAR-camera
based teacher and the camera based student are illustrated
in Figure 2 and that of the LiDAR-camera based teacher
and the LiDAR based student are in Figure 3. From the re-
sults, it is revealed that with UniDistill, the background ar-

Table 7. Ablation study in path (1) to show that feature distillation
performs better when selecting crucial points for alignment.

Method
AP ↑

NDS ↑
car truck ped motor mean

Baseline 82.8 52.0 76.4 54.2 53.5 63.9
Complete 82.4 52.1 77.4 56.8 54.3 64.2
Gaussian 84.7 54.3 76.1 53.4 54.7 64.8
Crucial 82.9 50.5 82.4 61.7 56.1 65.5

Table 8. Training time and memory usage of the detectors. “L”
and “C” represent LiDAR and camera respectively.

Modality
Teacher

Modality
Training Time (s) Memory Usage (GB)

L+C - 0.27 5.96
C - 0.13 4.60
C L 0.33 (+153%) 5.07 (+0.47)
C L+C 0.40 (+207%) 6.44 (+1.84)
L - 0.22 3.21
L C 0.46 (+109%) 4.51 (+1.30)
L L+C 0.53 (+140%) 5.63 (+2.42)

eas are suppressed and the boundaries between objects are
more clear. Therefore, there will be fewer false positive pre-
dictions and the detection performance is improved.
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Figure 2. Visualization of the response features. The boxes in red are the ground truth bounding boxes. The teacher and student detectors
are LiDAR-camera based and camera based respectively. The first and second rows represent the results of two scenes. With UniDistill,
the background areas are suppressed and the object boundaries are more clear.
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Figure 3. Visualization of the response features. The boxes in red are the ground truth bounding boxes. The teacher and student detectors
are LiDAR-camera based and LiDAR based respectively. The first and second rows show the results of two scenes. With UniDistill, the
background areas are suppressed and the object boundaries are more clear.
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