
Unsupervised Cumulative Domain Adaptation for Foggy Scene Optical Flow
Supplementary Material

Hanyu Zhou1, Yi Chang1*, Wending Yan2, Luxin Yan1

1 National Key Laboratory of Science and Technology on Multispectral Information Processing,
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

2 Huawei International Co. Ltd.
{hyzhou, yichang, yanluxin}@hust.edu.cn, yan.wending@huawei.com

1. Overview

In this supplementary, we first show the effectiveness of
cumulative domain adaptation architecture. We also study
the effectiveness of depth association module and spatial
context attention module. We compare the inference time of
different methods. Moreover, we conduct ablation studies
on the main parameter setup of the correlation distribution
alignment module and the weight sensitivity of model losses.
And then, we provide the qualitative comparisons of the
proposed UCDA-Flow and other state-of-the-art methods on
the synthetic dataset and real foggy images.

2. Discussion

2.1. Effectiveness of Cumulative Adaptation

In Fig. 1, we study the effectiveness of the proposed
cumulative depth-association motion adaptation (DAMA)
and correlation-alignment motion adaptation (CAMA) for
optical flow under real foggy scenes. Without motion adap-
tation in Fig. 1 (b), there are obvious artifacts in the motion
boundaries. With DAMA only in Fig. 1 (c), most of the out-
liers caused by fog degradation are removed, but there exist
some mismatched optical flow values. With both DAMA and
CAMA in Fig. 1 (d), the motion results are global-smooth
but boundary-sharp. Therefore, the proposed cumulative
domain adaptation architecture could benefit us to obtain the
final satisfactory result under real foggy scenes.

2.2. Effectiveness of Depth Association

Depth has two constraints for our framework. For the first
one, depth is constrained by the principle of the photometric
assumption and the smoothness assumption in the stereo
match. For the second, there is a natural geometry projection
relationship between depth and optical flow, which is used to
enhance the motion boundaries in rigid regions and constrain
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Table 1. The inference time on image size 800 × 600.

Method Paradim Time (s) EPE
RobustFlow Optimization 118 12.25

DenseFogFlow Semi-Supervised 0.074 1.78
GyroFlow Weakly-Supervised 0.055 0.95

UCDA-Flow Unsupervised 0.067 0.81

depth estimation. In Fig. 2, we illustrate the effectiveness
of depth association. Without geometry depth association,
optical flow boundaries of clean images are blurry. With ge-
ometry depth association, the motion boundaries are clearer.

2.3. Effectiveness of Spatial Context Attention

In Fig. 3, we simplify the spatial context attention (SCA)
module in the form of a schematic diagram. Given two adja-
cent frames, existing optical flow methods directly compute
the temporal cost volume cvtemp of the two warped frames,
and then estimate the optical flow. As shown in Fig. 3 (d),
the optical flow has local outliers due to the local mismatches
between adjacent frames with the temporal cost volume only.

However, we observe that there are non-local similar ob-
jects in the same image. For example, in Fig. 3 (a), the
window at the front of the bus has similar contexts with
windows in other regions. This observation motivates us
to propose the SCA module. Specifically, we first sample
similar objects by the KNN algorithm, and compute their
spatial cost volume, namely cvspa. And then, we take the
spatial cost volume cvspa as the correlation saliency atten-
tion, and fuse it into the temporal cost volume cvtemp to
refine the final cost volume ĉv for optical flow in Fig. 3 (c).
The proposed spatial context attention module is beneficial
to reduce optical flow anomalies caused by mismatch.

2.4. Inference Time

In Table 1, on image size 800 × 600, we compare the
inference time of our proposed UCDA-Flow with that of
other state-of-the-art methods, including semi-supervised
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DenseFogFlow, optimization-based RobustFlow, weakly-
supervised GyroFlow. The optimization-based method Ro-
bustFlow is time-consuming. The leaning-based methods
can reduce inference time. GyroFlow has the shortest infer-
ence time compared with DenseFogFlow and the proposed
UCDA-Flow. The reason is that GyroFlow can directly ob-
tain the background motion of optical flow from gyroscope
data, significantly saving the inference time. On the contrary,
although the inference speed of the proposed UCDA-Flow
is not the fastest, the performance is the best.

2.5. Parameters of Correlation Distribution Aligned

To study the optimal values for sample number N and
classes k of correlation distribution alignment (CDA) mod-
ule, we select [3, 5, 10, 13] and [100, 1000, 2000, 4000] as
candidate values for sample number N and classes k of CDA
in Fig. 4. We use KL divergence as the distribution distance
metric. In Fig. 4 (a), the original correlation distribution dis-
tance between synthetic and real foggy domain is 0.145. In
Fig. 4 (b) - (e), we can observe that a large class parameter k
is conducive to correlation distributions of both the domains
close. When k is 13, the distributions of both the domains
in the high correlation range are close, but in the low corre-
lation range enlarge. Therefore, we choose 10 as the setup
of the classes k. In Fig. 4 (f) - (i), the larger the sample
number N, the lower the KL divergence, and the closer the
correlation distributions of synthetic and real foggy domains.
Since the larger sample number will increase the cost time of
model training, we make a trade-off between effectiveness
and efficiency. We thus set the sample number N as 1000.

2.6. Weight Sensitivity of Model Losses

To choose the optimal weight parameters for the total
loss, we conduct the ablation study on the weight sensitivity
of the typical model losses, such as Lgeo

flow, Lconsis
flow , Lself

flow,
Lkl
corr. Lgeo

flow is to enhance optical flow in rigid regions.
Lconsis
flow is to transfer motion knowledge from clean domain

to synthetic foggy domain. The intention of Lself
flow and Lkl

corr

is to transfer motion knowledge from synthetic foggy domain
to real foggy domain. In Fig. 5 (a), the larger the weight of
Lgeo
flow, the more the depth dominates the network training,

resulting in that optical flow may focus too much on rigid
regions, but ignore the foreground non-rigid moving objects.
In Fig. 5 (b), when the weight of the flow consistency loss
Lconsis
flow is greater than 1, the convergence speed of optical

flow network reaches the bottleneck. In Fig. 5 (c), the weight
of Lself

flow can speed up the knowledge transfer from synthetic
foggy domain to real foggy domain. When the weight is
greater than 1, the convergence speed of optical flow network
training is unchanged. In Fig. 5 (d), we can observe that
the correlation distribution alignment loss Lkl

corr is sensitive
to the framework training. If the weight is too large, the

gradient will disappear. Therefore, we set the adaptation
losses weights as {λ3, λ4, λ5, λ6} = {0.1, 1, 1, 0.1}.

3. Comparison Experiments
3.1. Qualitative Comparisons on Synthetic Images

The visual results of optical flow predicted by the UCDA-
Flow and other state-of-the-art approaches on the synthetic
Fog-KITTI2015 dataset are shown in Fig. 6. We choose Ro-
bustFlow, UFlow, and Selflow for fair comparison which all
do not need any ground truth of optical flow. We take AECR-
Net as the defog method to make the state-of-the-art methods
trained on the defogging results of Fog-KITTI2015. We can
observe that RobustFlow can not work normally. The un-
supervised method UFlow contains degradation, especially
for motion boundary. Although the Defog + UFlow/Selflow
can obtain sharp boundaries, there are artifacts caused by the
residual degradation. On the contrary, our results are visual
pleasure with global smoothness and sharp boundaries.

3.2. Qualitative Comparisons on Fog-GOF Dataset

We also provide the visual results of optical flow predicted
by different optical flow approaches on the real Fog-GOF
dataset in Fig. 7. We choose RobustFlow, DenseFogFlow,
and GyroFlow for comparisons, which are designed for ad-
verse weather scenes. The optimization-based method Ro-
bustFlow cannot work well, in which there are artifacts be-
cause fog degradation has violated the brightness constancy
and gradient constancy assumption of optical flow. The semi-
supervised method DenseFogFlow improves global motion
smoothness, but suffers from severe outliers in motion bound-
aries in Fig. 7 (d). The reason is that DenseFogFlow only
transfers motion knowledge from clean domain to synthetic
foggy domain, but neglects the synthetic-to-real foggy do-
main gap, thus fails for real foggy scenes. Hardware-assisted
GyroFlow can predict the accurate background optical flow,
but the boundary of the foreground moving object is not
clear in Fig. 7 (e). The reason is that the gyroscope data
can only model the ego-motion, but it is difficult to estimate
the independent foreground object motion under real foggy
scenes. Instead, our method can remove erroneous outliers
and obtain satisfactory results as shown in Fig. 7 (f).

3.3. Qualitative Comparisons on Real-Fog World

We also show the optical flow results of our proposed
UCDA-Flow on our collected real foggy images, namely,
Real-Fog World, in which the foreground and background
motion patterns are more complex. The state-of-the-art opti-
cal flow methods in the comparisons on real foggy images
include UFlow, RobustFlow, and DenseFogFlow. As shown
in Fig. 8 (b), the unsupervised optical flow method UFlow
cannot well predict optical flow under real foggy scenes
because degradation breaks the brightness and gradient con-



stancy assumptions of optical flow. In Fig. 8 (c), we can
observe that the RobustFlow could roughly predict the mo-
tion tendency. The semi-supervised method DenseFogFlow
improves global motion smoothness, but the motion bound-
aries are not clear in Fig. 8 (d). On the contrary, our pro-
posed UCDA-Flow can estimate satisfactory optical flow on
Real-Fog World which has more complex motion patterns
compared to the Fog-GOF dataset, as shown in Fig. 8 (e).



(c) w/ DAMA, w/o CAMA(b) w/o Cumulative DA(a) Foggy images (d) w/ Cumulative DA

Figure 1. Effectiveness of cumulative adaptation architecture. It is difficult to directly learn optical flow well from the real foggy domain
without cumulative domain adaptation. DAMA can remove artifacts caused by fog degradation and make the optical flow clear, but there
exist some mismatched regions. CAMA can further greatly refine the details of optical flow.

est. depthclean image w/o depth-asso. w/ depth-asso.

est. depthclean image w/o depth-asso. w/ depth-asso.

Figure 2. Effectiveness of depth association. Depth contains rich structure information, facilitating the optical flow rigid boundaries sharp.
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Figure 3. Effectiveness of spatial context attention module. In (d), there exist local outliers in optical flow obtained from temporal cost
volume only in (d). In (c), SCA module can correct the optical flow details. SCA module can fuse the temporal cost volume with the spatial
cost volume computed by the non-local similarity method, which is beneficial to refine optical flow.



(a) Original correlation histogram
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(b) Aligned correlation histogram, k=3, N=1000 (c) Aligned correlation histogram, k=5, N=1000 (d) Aligned correlation histogram, k=10, N=1000 (e) Aligned correlation histogram, k=13, N=1000
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(f) Aligned correlation histogram, k=10, N=100 (g) Aligned correlation histogram, k=10, N=1000 (h) Aligned correlation histogram, k=10, N=2000 (i) Aligned correlation histogram, k=10, N=4000
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Figure 4. Ablation study on the main parameters of correlation distribution alignment module. Note that, the x-axis denotes the correlation
value, and the y-axis denotes the number of features reaching the correlation. In (b) - (e), a large class parameter k can make correlation
distributions close. In (f) - (i), the larger the sample number N, the lower the KL divergence, and the closer the correlation distributions.
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Figure 5. The weight sensitivity of model adaptation losses. The proposed framework is sensitive to the KL divergence loss of correlation
distribution and the depth-association optical flow geometry loss.



(a) Foggy images / GT (b) RobustFlow (c) UFlow (e) Defog + Selflow (f) UCDA-Flow(d) Defog + UFlow

Figure 6. Comparison of optical flows on synthetic Fog-KITTI2015 dataset.



(a) Real foggy images (b) Groud Truth (c) RobustFlow (e) GyroFlow (f) UCDA-Flow(d) DenseFogFlow

Figure 7. Comparison of optical flows on real Fog-GOF dataset.



(a) Real foggy images (b) UFlow (c) RobustFlow (d) DenseFogFlow (e) UCDA-Flow

Figure 8. Comparison of optical flows on Real-Fog World dataset.
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