
Appendix
A. Effect of the number of deep prompt tokens

We figure out that the best number of deep prompt to-
kens varies for different datasets and the detailed results
are shown in Fig. 6. For the PASCAL VOC 2012 dataset
(VOC) which contains fewer training samples and cate-
gories, 10 tokens are enough to obtain significant perfor-
mance on both seen and unseen classes. However, for large-
scale datasets, more deep prompts, i.e., 100 for COCO-Stuff
164K (COCO) and 35 for PASCAL Context (Context), are
beneficial to achieve better segmentation performance. In
general, the best number of deep prompt tokens increases
with the scale of the dataset and the complexity of the per-
pixel classification task increases. Meanwhile, using too
many visual prompts may be detrimental to our model in-
stead.
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Figure 6. The quantitative results of applying the different num-
bers of deep prompt tokens. Note that “S” and “U” represent seen
and unseen classes separately.

B. Effect of the depth of deep prompt tokens
Except that the number of deep prompt tokens can im-

pact the performance of zero-shot semantic segmentation,
we also conduct extensive experiments on PASCAL VOC
2012 (VOC) to explore the effect of inserting the learnable
prompts in different layers of the CLIP image encoder. The
quantitative results are reported in Tab. 8. For a better ex-
planation, we number the total 12 vision transformer layers
in the CLIP image encoder from 1 (“bottom") to 12 (“top")
and the layers of inserting prompts are as denoted in the first
column of Tab. 8. We figure out that adding prompt tokens
on “bottom" layers generally tends to perform better than on
“top" layers. Meanwhile, inserting learnable prompt tokens
in each ViT layer (layer=1→12) achieves the best perfor-
mance which is also the default setting in our experiments.

Table 8. Effect of the depth of deep prompt tuning on VOC.

layer pAcc mIoU(S) mIoU(U) hIoU
1 91.4 87.5 67.8 76.4

1→3 91.7 86.7 70.2 77.6
1→6 92.7 87.8 75.3 81.1
1→9 93.3 88.9 72.4 79.8
1→12 94.6 91.9 77.8 84.3

10→12 92.5 88.3 70.9 78.6
7→12 92.5 89.0 68.0 77.1
4→12 93.6 91.5 66.9 77.3

C. Effect of single and multiple text templates

Following the training details of CLIP, we apply a sin-
gle template “A photo of a {}" on PASCAL VOC 2012
(VOC) and multiple templates on large-scale datasets, i.e.,
COCO-Stuff 164K (COCO) and PASCAL Context (Con-
text), when obtaining the class embeddings from CLIP text
encoder. We provide the quantitative results of using single
and multiple templates in Tab. 9 where we can see that mul-
tiple descriptions achieve reasonable improvements on both
two datasets.

Table 9. Comparison of using single and multiple templates on
COCO-Stuff 164K and PASCAL Context datasets.

dataset template pAcc mIoU(S) mIoU(U) hIoU

COCO
single 61.4 39.5 40.6 40.0

multiple 62.0 40.2 41.4 40.8

Context
single 75.8 45.1 52.1 48.3

multiple 76.2 46.0 54.6 49.9

The details of the 15 augmented templates we used on
COCO-Stuff 164K and PASCAL Context datasets are:

‘A photo of a {}.’
‘A photo of a small {}.’
‘A photo of a medium {}.’
‘A photo of a large {}.’
‘This is a photo of a {}.’
‘This is a photo of a small {}.’
‘This is a photo of a medium {}.’
‘This is a photo of a large {}.’
‘A {} in the scene.’
‘A photo of a {} in the scene.’
‘There is a {} in the scene.’
‘There is the {} in the scene.’
‘This is a {} in the scene.’
‘This is the {} in the scene.’
‘This is one {} in the scene.’
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Figure 7. Brief frameworks of related two-stage methods, our one-stage baseline, and our proposed ZegCLIP model. The happy face
in (b)(c) means good performance in seen or unseen classes, while the sad face in (b) represents that the baseline model achieves poor
performance in unseen classes.

D. Brief frameworks of related Two-stage and
our One-stage method

As we described above, previous zero-shot semantic
segmentation methods based on CLIP follow a two-stage
paradigm as shown in Fig. 7-(a). In stage 1, they need to
generate abundant class-agnostic region proposals accord-
ing to the learnable queries. In stage 2, each cropped pro-
posal region will be encoded via CLIP image encoder to
utilize its powerful image-level zero-shot classification ca-
pability. The CLIP is still used as a zero-shot image-level
classifier.

Instead, we propose a simpler-and-efficient one-stage
solution as our baseline that directly leverages the feature
embedding from CLIP and extends CLIP from image-level
classification into pixel-level (or patch-level) as shown in
Fig. 7-(b). We introduce a light transformer-based de-
coder to generate semantic masks by computing the simi-
larities between text-wise and patch-wise embeddings ex-
tracted from CLIP. In the baseline, the CLIP text encoder is
frozen and the CLIP image encoder can be fixed (Baseline-
Fix) or fine-tuned (Baseline-FT).

However, our baseline model still faces the overfitting
problem on seen classes. To improve the generalization
ability to unseen classes, we propose three important de-
signs on our baseline as shown in 7-(c). After combining
three designs, our model ZegCLIP can transfer the zero-shot
ability of CLIP from image-level to pixel-level and achieve
significant performance on both seen and unseen classes.

In conclusion, in the two-stage methods, N cropped
class-agnostic images will be fed into CLIP for image-
wise classification which may heavily increase the compu-
tational cost. Our proposed one-stage paradigm is simple-
but-efficient due to the original image will be encoded only
once. The inference speed has been compared in Tab. 3.
Our one-stage method ZegCLIP can achieve a speedup of
about 5 times faster than the two-stage method in the infer-
ence stage.

E. The details of unseen classes names
For fair comparison, here we provide the detailed unseen

class names of PASCAL VOC 2012 (VOC), COCO-Stuff
164K (COCO), and PASCAL Context (Context) dataset in
Tab. 10.

Table 10. The details of unseen class names.

Dataset The name of unseen classes
VOC pottedplant, sheep, sofa, train, tvmonitor

COCO
cow, giraffe, suitcase, frisbee, skateboard
carrot, scissors, cardboard, clouds, grass

playingfield, river, road, tree, wall concrete

Context
cow, motorbike, sofa, cat, boat, fence
bird, tv monitor, keyboard, aeroplane

F. More visualization details
To further demonstrate the effectiveness of our designs

on the one-stage baseline (Baseline-FT version), we pro-
vide more visualizations including the predicted segmenta-
tion results and the semantic masks of different class queries
via decoder in Fig. 8. Note that the class names in red are
the novel categories.

We can see, after applying our proposed designs, the seg-
mentation performance of (b) ZegCLIP has improved on
both seen and unseen classes compared with (a) Baseline-
FT. Meanwhile, similar unseen classes can be more clearly
classified by our ZegCLIP model as shown in the heat maps.
For example, in the “COCO-000000079188” testing im-
age, although Baseline-FT can classify “grass” and “tree”
(both are unseen classes) correctly in the semantic masks,
our ZegCLIP can distinguish these novel classes discrimi-
natively.
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Figure 8. Visualization of semantic masks of different text query embeddings.
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