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A. Discussion on Regional Representations
In our proposed bi-level routing attention, we derive the

regional representations (Qr and Kr) with average pooling
for region-to-region routing. We justify the choice here.

In fact, as the goal of region-to-region routing is to find
the most related tokens for token-to-token attention in the
next step, it is reasonable to maximize the average token-
to-token affinity scores between the two regions. However,
this is equivalent to maximizing the affinity score between
the average tokens of the two regions, because
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where we denote the set of token indices of the two regions
with Ω and Ω′.

B. Throughput Comparison
To demonstrate the computation efficiency of the pro-

posed bi-level routing attention, we compare the through-
puts of models using different attention mechanisms.
Specifically, we replace the shift window attention mod-
ules in Swin-T [4] with quad-tree attention [5] modules to
form QuadTree-STL, and with our bi-level routing attention
modules to form BiFormer-STL. We then use the widely
used timm [7] script to benchmark the training and infer-
ence throughput on a 32 GB Tesla V100 GPU with a batch
size of 128 and image resolution of 224× 224.

As shown in Figure 1, Swin-T has the highest through-
put due to its simplicity. Switching to our bi-level rout-
ing attention(BRA), the training and inference throughput
of BiFormer-STL decrease by ∼30% and ∼40% respec-
tively in comparison with Swin-T. This is caused by ex-
tra GPU kernel launch and memory transactions caused by
the routing process (i.e. locating the regions to attend and
gather key-value pairs). Nonetheless, BiFormer-STL is still
3× ∼ 6× faster than QuadTree-STL. This is due to that
on the one hand the recursive nature of quad-tree attention
hurts the parallelism, on the other hand quad-tree attention
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Figure 1. Throughput comparison on a 32GB Tesla V100 GPU.
The suffix “STL” denotes Swin-T Layout, which means we use
Swin-T [4] backbone with only attention module being replaced.
We report results under both FP32 precision and automatic mixed
precision (AMP) modes.

relies on sparse matrix multiplications which are inefficient
on GPUs, while our BRA can be efficiently implemented
with key-value token gathering followed by GPU-friendly
dense matrix multiplications.

It is worth noting that, the overheads of both memory
transactions and kernel launch incurred by the routing pro-
cess can be reduced via engineering efforts such as GPU
kernel fusion. We leave this optimization to our future
work.

C. Choices of top-k and partition factor S

In the paper, S and k were chosen more with considera-
tion of engineering issues. (1) S is chosen as a divisor of the
training size to avoid padding, which slows down the train-
ing and may also degrade the performance. For example, in
image classification where the resolution is 224 = 7 × 32,
we use S = 7 so that it is a divisor of the size of fea-
ture maps in every stage. This is similar to SWinTrans-
former [4], which uses a window size of 7. (2) In dense
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S k #tokens to attend Acc im/s (FP32)

7 1,4,16,49 64,64,64,49 82.7 522.3

7 1,2,8,32 64,32,32,32 82.4 563.2
7 2,8,32,49 128,128,128,49 82.6 419.9

8,4,2,1 2,2,2,1 98,98,98,49 82.3 606.2

Table 1. Ablation study on top-k and partition factor S.

prediction tasks, we use larger S to balance the complexity
of region-level routing and token-level attention to achieve
overall lower complexity. One can find hints from Eq. 9 of
the paper, though we do not strictly follow the scaling rule
due to the size divisor constraint. (3) We gradually increase
k to keep a reasonable number of tokens to attend as the
region size becomes smaller in later stages.

It is possible to try different combinations of S and k.
We show ablation results on IN-1K in Table 1, based on
BiFormer-STL (as in the paper). A key observation from
these experiments is that increasing the number of tokens to
attend may even hurt the accuracy. This implies the explicit
sparsity constraint may serve as a regularization to avoid
distractions from the background.

D. Adapting Pretrained Plain ViT with BRA

Recently, to take advantage of large-scale pretraining
with masked image modeling, a new research direction
emerges to adapt plain ViT [2] for dense prediction tasks [1,
3]. Here we explore adapting pre-trained plain ViT [2] for
semantic segmentation with our proposed BRA.

Specifically, we replace all or part of full multi-head self-
attention (MHSA) modules in DeiT-B [6] with our BRA and
directly load the weights pre-trained on ImageNet before
training on ADE20K dataset for semantic segmentation. In
this way, the linear projection weights of BRA modules are
initialized with those of the original MHSA. We compare
such an adaptation with those proposed in [3], i.e. using
local window attention (window size w = 14) together with
several global attention or convolution propagation blocks.
We set window size w = 4 (which is equivalent to region
partition size S = 8 since the feature map has a resolution
of 32 × 32) and the number of regions to attend k = 12,
hence each query attends to 42× 12 = 192 key-value pairs,
which is comparable to the local window attention where
each query attends to 14× 14 = 196 key-value pairs.

Table 2 shows the results. Without propagation blocks,
the architecture using BRA significantly surpasses the one
with local window attention by 2.4 mAP. When further
equipped with 4 global propagation blocks, the performance
of both architectures is improved, while the one using BRA
still has an advantage of 0.2 mAP.

attention function mIoU(%)

local window attention (w = 14) 43.55
BRA(w = 4, k = 12) 45.92

local window attention + 4 conv prop. blks. 44.68
local window attention + 4 global prop. blks. 46.64
BRA + 4 global prop. blks. 46.84

Table 2. Adapting pretrained ViT [2] with BRA for semantic seg-
mentation on ADE20K. For decoder, we use the Simple Feature
Pyramid [3] followed by with Upernet [8] head.

E. More Visualization Results
To further show how BRA works, we demonstrate more

visualization results in Figure 2.
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Figure 2. More attention map visualization results. For each scene, We demonstrate 2-3 query positions on the input image (left), corre-
sponding routed regions (middle) and final attention heat map (right).
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