
APPENDIX In this appendix we introduce the datasets
used in the experiments and clarify our data partition
method in Appendix A. Network architectures are illus-
trated in Appendix B. The grid search of baselines’ hyper-
parameters are detailed in Appendix C. Model statistics on
different datasets collected from pFedVEM are presented in
Appendix D. More experimental results are given in Ap-
pendix E.

A. Datasets
In this section we introduce the datasets and data par-

tition method used in this paper. We use Fashion-MNIST
(FMNIST) and CIFAR10 to model label distribution skew,
CIFAR100 and SUN397 to model label concept drift.

FMNIST [35]. This is a dataset of clothing images con-
sisting of 60,000 training data points and 10,000 test data
points associated with 10 labels: [T-shirt/top, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle
boot].

CIFAR10 [15]. This dataset consists of 50,000 training
data points and 10,000 test data points associated with 10
labels: [Airplane, Automobile, Bird, Cat, Deer, Dog, Frog,
Horse, Ship, Truck].

CIFAR100 [15]. This dataset consists of 50,000 training
data points and 10,000 test data points associated with 100
labels. The 100 labels (subclasses) are grouped into 20 su-
perclasses such that every superclass contains 5 subclasses,
e.g. the superclass Household funiture contains [Bed, Chair,
Couch, Table, Wardrobe].

SUN397 [36]. This scene category dataset contains
108,753 images from 397 categories. It is arranged in a
3-level tree, we use the first level as superclasses: [In-
door, Manmade outdoor, Nature outdoor] and leaf nodes
as subclasses, e.g. Indoor contains [Living room, Bedroom,
Kitchen, Bathroom, . . . ]. The number of data points per
category and the number of categories per superclass is in-
consistent, we take the first 50 categories per superclass and
first 100 data points per category according to the ordering
in the hierarchy file, then split 80% and 20% per category
for the training and test set.

Most existing works conduct splitting to generate
clients’ data. The splitting methods are either subject to a
fixed size or a random distribution. The former (e.g. [1,40])
cannot represent data quantity disparity. While the lat-
ter methods draw a sequence of fractions per label w.r.t. a
Dirichlet distribution DirJ(α) (e.g. [7, 37]) or a Uniform
distribution of a range around 0.5 [29] then split and dis-
tribute one fraction to each client. As a result the expected

local data sizes are still the same across clients, and data
quantity disparity cannot be well represented. Some work
(e.g. [31]) resorts to sampling, but to avoid the out-of-index
problem the sampling range is usually conservative.

In this work we conduct splitting by random slicing, the
detailed processing steps are as follows:

(i) Sampling labels or subclasses: First we determine
what types of data every client contains. Generating a list of
labels (for label distribution skew) or lists of subclasses (for
label concept drift), each client samples without replace-
ment from the list of labels or lists of subclasses. When the
list is empty, refill and continue until the for-loop over the
clients is done.

(ii) Sampling data points: Then we determine the exact
data points every client receives. Assume the type of data
needs to be partitioned into M parts for M clients, while
there are N data points belonging to this type. We first shuf-
fle the data point vector and then draw M − 1 indices from
1 to N − 1 to slice the N data points into M parts. Finally,
we distribute the m-th part to the m-th client allocating this
type of data.

There are two strengths of such data splitting. First, the
federated group always contains the full training set, while
we can make data scatter in different patterns via random
seeds. Second, the resulting data partition is close to the
negative binomial distribution with one success and thus
subject to the nature of data quantity disparity, that is, few
big datasets are concentrated on few clients, whereas a large
amount of data is scattered acros many clients with small
dataset sizes. The intuition behind is that when we slice the
data points vector at step (ii), M − 1 indices are uniformly
draw from 1, . . . , N − 1. Thus every index approximately
conducts a Bernoulli trial with p = (M − 1)/(N − 1),
although in fact they are dependent. We visualize the distri-
bution of local data sizes in Figure 3 - Figure 6. We notice

Figure 3. Distribution of local data sizes on FMNIST (setting is
consistent with Table 1). Visualized by 1000 times Monte-Carlo
simulation.

that the distribution on SUN397 is different from others.
Recall in our setting, SUN397 has 50 subclasses per sub-



Figure 4. Distribution of local data sizes on CIFAR10 (setting is
consistent with Table 1). Visualized by 1000 times Monte-Carlo
simulation.

Figure 5. Distribution of local data sizes on SUN397 (setting is
consistent with Table 1). Visualized by 1000 times Monte-Carlo
simulation.

Figure 6. Distribution of local data sizes on CIFAR100 (setting is
consistent with Table 1). Visualized by 1000 times Monte-Carlo
simulation.

class. When #Clients = 50 every subclass in SUN397 is
distributed to exactly one client and when #Clients = 100
every subclass is distributed to two clients, thus in these two
extreme cases the resulting PDF is either a delta or a uni-
form function.

B. Network Architectures
In this section we illustrate the network architectures

used in this work, see Figure 7 - Figure 9.

Figure 7. Network architecture for FMNIST.

Figure 8. Network architecture for CIFAR10.

Figure 9. Network architecture for CIFAR100 and SUN397.



C. Hyperparameters
In this section we describe the hyperparameter search

space for each baseline and grid search is used. The search
space is determined according to the best hyperparameters
provided in previous works. The notations of hyperparame-
ters for each framework are detailed below, the search space
is summarized in Table 4.

FedAvg: We tune on the learning rate η, batch-size B
and epochs R.

FedProx: We tune on the learning rate η, batch-size B,
epochs R, and the penalty constant µ in the proximal term.

FedPer: We tune on the learning rate η, batch-size B
and epochs R.

Scaffold: We adopt Option 2 and set global learning
rate to 1, which are suggested by [14]. We tune on the local
learning rate η, batch-size B and epochs R.

FedRep: We tune on the learning rate η, batch-size B,
epochs R for the base model and epochs K for the head
model.

PerFedAvg: We apply the Hessian-free (HF) variant
which outperforms the first-order (FO) variant in most set-
tings. We tune on the stepsize α for the adaptation, and
the learning rate β, iterations R, batch-size B for the lo-
cal training of the Meta-model. Before evaluation, every
client adapts the Meta-model to the local data with one
epoch training using batch-size B, which empirically per-
forms better than one-step adaptation.

IFCA: We follow the configuration for ambiguous clus-
ter structure and define the number of clusters to two, which
are suggested by [9]. We tune on the learning rate η, batch-
size B and epochs R.

pFedME: Following [31], the global model update factor
β is set to be 1, which is more stable when the number of
clients is changed or different random seed is used. We tune
on the learning rate η, batch-size B, regularization constant
λ and local computation rounds R.

pFedBayes: Like [31], the global model update factor
β is set to be 1. Same as pFedVEM, the batch-size is set to
be the local data size. We tune on the learning rate η, epochs
R, initial standard deviation σ and regularization constant
λ.

Local: Different from FL frameworks which apply the
same hyperparameters across clients, for Local we allow
every client to train a model locally for 20 epochs while
search for the respective best batch-size B and learning rate
η.

D. Model Statistics
In this section we discuss the model statistics mea-

sured by pFedVEM. We first investigate the distribution
of confidence values in different settings. Since in the
model aggregation, the parameters of client j is weighted

Method Hyperparameter Search Range

FedAvg
η {0.01, 0.001, 0.0001}
R {5, 10, 20}
B {10, 50, 100}

FedProx

η {0.01, 0.001, 0.0001}
R {5, 10, 20}
B {10, 50, 100}
µ {0.1, 1, 10}

Scaffold
η {0.1, 0.01, 0.001}
R {5, 10, 20}
B {10, 50, 100}

FedPer

η {0.01, 0.001, 0.0001}
R {5, 10, 20}
B {10, 50, 100}

FedRep

η {0.01, 0.001, 0.0001}
R {5, 10, 20}
K {5, 10, 20}
B {10, 50, 100}

PerFedAvg

α {0.1, 0.01, 0.001}
β {0.1, 0.01, 0.001}
R {5, 25, 50}
B {10, 50, 100}

IFCA
η {0.01, 0.001, 0.0001}
R {5, 10, 20}
B {10, 50, 100}

pFedME

η {0.01, 0.001, 0.0001}
λ {1, 10, 15}
R {5, 10, 20}
B {10, 50, 100}

pFedBayes

η {0.01, 0.001, 0.0001}
λ {1, 10, 15}
R {5, 10, 20}
σ {1, 0.1, 0.01, 0.001}

Local
η {0.001, 0.0001}
B {10, 50, 100}

Table 4. Hyperparameters and the corresponding search space of
the baselines.

by τj/
∑

j∈St
τj (cf. Equation (9)), we thus investigate the

confidence ratio τj/
∑J

j=1 τj instead. We collect clients’
confidence ratios at different communication rounds from 5
independent runs and visualize the distribution using kernel
density estimation with Gaussian kernel. Figure 10 shows
that at the end of training, clients trained on CIFAR100 ex-
hibit the largest variation of confidence ratio.

We then investigate the distribution of model devia-
tion. For the j-th client the model deviation is defined as
∥wj−w∥2/d. Similarly, we summarize the results of 5 runs
and visualize the distribution using kernel density estima-



(a) Communication round = 5 (b) Communication round = 30

(c) Communication round = 60 (d) Communication round = 100

Figure 10. Distribution of τ1:J/
∑J

j=1 τj over 100 clients on dif-
ferent datasets. Kernel density estimation is used for the visualiza-
tion.

tion. Figure 11 shows that during training, clients models
trained on CIFAR100 spreads out over a larger range. This
indicates that the setting of CIFAR100 is highly heteroge-
neous and this task is a more challenging as the clients’ pa-
rameters sent back to the server could be severely deviated
from each other. In contrast, clients trained on FMNIST
concentrates on the global model.

E. Additional Experimental Results
E.1. Convergence rate

Since the communication bottleneck is one of the main
issues of FL, a framework with faster convergence rate is
preferred. We therefore present the test accuracy vs. com-
munication round plots evaluated on CIFAR10 over 50, 100,
200 clients. As shown in Figure 12, pFedVEM converges
faster than other frameworks and already reaches a good
accuracy at 30 rounds of communication. This strength of
pFedVEM is more obvious for 50 clients, where each client
is expected to have more data and therefore variational in-
ference performs better.

E.2. Limited Data Availability

We examine two cases to demonstrate the advantage of
our method pFedVEM when data is scarce. First, we show
that the small clients, i.e. the 10% of clients with the small-
est local data sizes, perform better with pFedVEM. Based

(a) Communication round = 5 (b) Communication round = 30

(c) Communication round = 60 (d) Communication round = 100

Figure 11. Distribution of ∥w1:J − w∥2/d over 100 clients on
different datasets. Kernel density estimation is used for the visual-
ization.

Dataset Method Small Clients All Clients Diff.

CIFAR10

FedPer 66.2± 0.0 68.4± 0.4 -2.2
FedRep 64.5± 0.0 67.4± 0.4 -2.9

PerFedavg 51.8± 0.0 65.6± 0.8 -13.8
pFedME 65.0± 0.0 71.4± 0.2 -6.4

pFedBayes 66.9± 0.0 68.5± 0.3 -1.6
Ours 70.2 ± 0.0 71.9 ± 0.1 -1.7

CIFAR100

FedPer 30.1± 0.0 39.3± 0.7 -9.2
FedRep 30.8± 0.0 41.2± 0.6 -10.4

PerFedavg 45.2± 0.0 48.3± 0.5 -3.1
pFedME 40.5± 0.2 47.6± 0.5 -7.1

pFedBayes 40.6± 0.0 46.5± 0.2 -5.9
Ours 50.8 ± 0.2 56.2 ± 0.4 -5.4

Table 5. Average test accuracy of PMs (% ± SEM) of small clients
(10% clients with the smallest local data sizes) and all clients. The
difference between the means is shown in the last column. The
experimental configuration corresponds to the 100-client setting
in Table 1.

on Table 5, we see the utility gap between the small clients
and the overall average is moderate for pFedBayes and
our method, while our method pFedVEM achieves signif-
icantly better accuracy than the baselines. Second, we re-
duce the number of training samples |D| that the federated
group of all clients has and evaluate the performance of all



(a) Client = 50 (b) Client = 100 (c) Client = 200

Figure 12. Convergence rate evaluated by test accuracy vs. communication round over 50, 100, 200 clients on CIFAR10.

Dataset Method
|D| = 5000 |D| = 10000 |D| = 50000

PM GM PM GM PM GM

CIFAR10

Local 35.7± 0.3 − 39.6± 0.1 − 87.5± 0.1 −
FedAvg − 41.2± 0.6 − 47.4± 1.0 − 85.4± 0.3
FedProx − 41.5± 0.5 − 46.6± 0.5 − 86.3 ± 0.2
Scaffold − 39.7± 0.6 − 46.4± 0.3 − 85.4± 0.1
FedPer 40.7± 0.5 − 51.8± 0.9 − 90.7± 0.1 −
FedRep 40.7± 0.5 − 51.3± 0.9 − 90.7± 0.1 −
IFCA 41.3± 0.6 − 47.0± 0.7 − 85.6± 0.2 −

PerFedavg 41.4± 0.4 − 48.2± 0.3 − 88.6± 0.1 −
pFedME 44.9± 0.9 36.1± 1.1 53.1± 1.2 42.5± 1.8 91.4 ± 0.1 84.4± 0.6

pFedBayes 52.3± 0.5 36.8± 0.4 58.1± 0.3 41.9± 0.9 91.3± 0.1 84.2± 0.3
Ours 57.1 ± 0.2 45.7 ± 0.3 61.8 ± 0.3 50.1 ± 0.4 91.4 ± 0.1 85.6± 0.2

Table 6. Average test accuracy of PMs and test accuracy of GM (% ± SEM) over different numbers of training samples of CIFAR10. Other
configurations correspond to the 100-client setting in Table 1. Best result is in bold.

Dataset Method
50 Clients 100 Clients 200 Clients

PM GM PM GM PM GM

Digit-Five

FedProx − 86.2± 0.4 − 86.1± 0.1 − 85.8± 0.3
pFedME 91.2± 0.2 85.6± 0.4 89.5± 0.3 86.6± 0.3 88.4± 0.1 86.9 ± 0.6

pFedBayes 90.9± 0.2 74.8± 1.3 88.2± 0.2 76.1± 0.6 85.2± 0.3 74.4± 0.7
Ours 92.7 ± 0.2 86.6 ± 0.3 91.1 ± 0.1 87.1 ± 0.1 89.8 ± 0.1 86.9 ± 0.2

Table 7. Average test accuracy of PMs and test accuracy of GM (% ± SEM) over 50, 100, 200 clients on Digit-Five. Best result is in bold.

frameworks. Again, results in Table 6 show that our method
performs significantly better than the baselines when data is
scarce.

E.3. Feature Distribution Skew

We study a mixed case of label distribution skew and
label concept drift, which is also known as feature distri-
bution skew. To this end, we use the Digit-Five dataset
consisting of MNIST, SVHN [25], USPS [12], MNIST-
M [8], Synthetic Digits [28] and adopt the following allo-

cation scheme: 1) randomly select a dataset 2) randomly
pick 5 labels in the selected dataset 3) randomly select data
and distribute to each client. We tune hyperparameters of
three main competing baselines. The results are presented
in the Table 7. We note that all methods on Digit-Five ob-
tain overall high accuracy, while our method outperforms
other methods in this setting of feature distribution skew.


