
A. Details for Inter-graph Similarity Compu-
tation

Here we present the details for computing the inter-graph
similarity through Sikhorn algorithm. Considering a graph
G = {Fm, {Dm,n}Mn=1}Mm=1, we first generate a single-
vector representation for each vertex by aggregating other
vertices. The aggregation is achieved through weighted sum
written as:

F̂m =
1∑M

n=1 Wm,n

M∑
n=1

Wm,nFn, (1)

Where the weight Wm,n is formulated by:

Wm,n = exp (−Dm,n) . (2)

In this way, G is represented as {F̂m}Mm=1. For simplify, we
denote Gi for the i-th image as {F̂ i

m}Mm=1. Next, we match
Gi and Gj by solving an optimal transport (OT) task:

Min
A

∑
a,b

Aa,bMa,b, (3)

where A is the transportation plan that implies the align-
ment information and M is the cost matrix. Ma,b measures
the transport cost from the a-th vertex F̂ i

a in Gi to the b-th
vertex F̂ j

b in Gi, which is written as:

Ma,b = 1− Cos
(
F̂ i
a, F̂

j
b

)
, (4)

where Cos denotes the cosine similarity. The unique solu-
tion A∗ can be calculated through Sinkhorn’s algorithm:

A∗ = diag (u)Kdiag (v) , (5)

where the vectors u and v are obtained through the above
iterations:

vt=0 =
1m

vt+1
,

ut+1, vt+1 =
1n

Kut+1

(6)

we set the iteration number to be 5. Finally, the transport
cost tc is computed as:

tc =
∑
a,b

A∗
a,bMa,b, (7)

which measures the similarity between Gi and Gj

B. Implementation Details
Our method contains two phases: agent training and pol-

icy deployment. The first phase trains the agent network to
get the selection policy, while the latter phase employs the
trained policy for the CSS training.

For the deployment phase, the hyper-parameters settings
follow the previous work [2]. Concretely, we adopt SGD as
the optimizer, where the momentum value is 0.9 and the ini-
tial learning rate is 1e-2 with the ‘poly’ learning rate decay
schedule. For each continual stage, the network is trained
for 30 epochs on Pascal VOC and 60 epochs for ADE20K.
The batch size is 24 for both datasets. Following [1], the
memory length |M| is 100 and 300 for Pascal-VOC 2012
and ADE20K, respectively. Following [3], the superpixel
number M for computing sample diversity is 5, ϵ in Eq. 5
is 0.1.

For the agent training phase, as we have discussed in
Sec. 6 of text, we use the different hyper-parameters set-
tings to speed up training. Concretely, in this phase, we use
Deeplabv3 with ResNet18 backbone as the segmentation
model. The training epochs Y in Alg. 1 is 1000. We ran-
domly partition 10% of whole data into the training set and
leave others as the reward set. For each continual stage, the
network is trained for 5 epochs on Pascal VOC and 8 epochs
for ADE20K. The segmentation network is optimized by
SGD with the initial rate being 0.01, and the agent network
is optimized by Monmentumn with the learning rate being
0.1.

C. Segmentation Training
In each stage t of a CSS task, both the memory M and

current dataset Dt are utilized for training the segmenta-
tion model. We follow previous works by using the widely-
adopted pseudo-label mechanism to enhance the segmenta-
tion training performance. Concretely, the pixels belong-
ing to previous and future classes become the background
for images in the current stage. Considering the model is
trained on the combined ground truth from both current and
previous classes, we use its prediction to generate pseudo
labels for background pixels for images in M and Dt. Con-
cretely, let’s denote 0 be the background class. For a sam-
ple X with the ground truth label Y , we first use the current
segmentation model to get its prediction mask P and the
confidence map M , then the pseudo ground truth label Ŷ t

i

for the i-th pixel on X is obtained by:

Ŷ t
i =


Yi, if Yi ̸= 0

Pi, if Yi = 0 andMi > 0.8

0, else

(8)

Eventually, X along with the generated pseudo label Ŷ t are
used for training the segmentation model through the cross-
entropy loss.

D. More Ablation Results
Ablation of Memory Length. In the experiment sec-
tion, for the fair comparison, we follow [1] by setting



50 75 100 150 200 250 300
Memory Length

64

66

68

70

72

74
Re

su
lt 

on
 'a

ll' 
M

et
ric

Figure 1. Ablation results of memory length. As the memory
length increases from 50 to 300, the mIoU on the ‘all’ metric in-
creases from 59.10 to 68.37.

2 3 4 5 6 7 8 9 10
Superpixel Number

67

68

69

70

71

72

73

Re
su

lt 
on

 'a
ll' 

M
et

ric

Figure 2. Ablation results of superpixel number.

the memory length M to 100 and 300 for Pascal-VOC
2012 and ADE20K, respectively. We further validate the
performance for the 15-1(6 stages) setting on Pascal-VOC
2012 by using memories with different lengths ranging
from 50 to 300. The results are shown in Fig. 1. We can
observe that a larger memory brings better performance.
As the memory length increases from 50 to 300, the mIoU
on the ‘all’ metric increases from 63.56 to 75.33.

Ablation of Superpixel Number. In order to compute the
sample diversity, each region is divided into M superpixels
for constructing the graph. Here we perform experimenters
to validate how M affects the performance and present the
results in Fig. 2. As can be observed, the performance keeps
stable when M is larger than 3 and smaller than 9, while a
too large M leads to the over segmenting that negatively
affects the performance to some extent. Generally speak-
ing, our method is non-sensitive to the hyper-parameter M ,
demonstrating its high robustness.

E. Discussion of State Representation Compu-
tation

As illustrated in Line 435, Sec. 4.2.1 of the text, for com-
puting the sample diversity div and forgetfulness gc, we in-

(a) original Image (b) Enhanced Image

Figure 3. Comparison between the original images and images
after enhacement.

troduce a support set Sc for each class c that contains several
graphs for images within c. To relieve the computation bur-
den, for each current class in Ct that has a larger number of
samples, we randomly sample 10% from all images to form
Sc. Then sample diversity is derived by computing and av-
eraging the inter-graph similarities with all graphs in Sc.
We conduct experiments on the 15-1 (6 stages) setting for
Pascal-VOC 2012 dataset to verify the effectiveness. Load-
ing all images into Sc gets 72.25% mIoU for the ‘all’ met-
ric, which is just slightly better than the sampled set, which
achieves 71.94% mIoU. However, computing similarities
on all images consumes 10 times more time than using the
sampled set, which is unacceptable. Therefore, our strategy
can be computationally efficient yet effective.

F. Cross-dataset Deployment

As discussed in Sec. 6 of the text, we can use an agent
trained on one dataset to deploy on other datasets. We per-
form experiments to verify that capability. For the ‘all’
metric, using the agent trained on Pascal-VOC 2012 to de-
ploy on the 100-50(2 stages) setting of ADE 20K achieves
34.87% mIoU, and using the agent trained on ADE 20K
to deploy on 19-1(2 stages) setting of Pascal-VOC 2012
achieves 74.96% mIoU, with both cases showing good per-
formance. The results demonstrate the high generalization
of our method. In realistic applications, the agent only
needs to be trained once and then can be used on several
different CSS tasks without the extra computation cost for
agent retraining.



0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Agent Scores

0

10

20

30

40

50
Pr

op
or

tio
n 

(%
)

12%

49%

29%

8%

2%2%

15%

36%

27%

20%

Before Enhancement
After Enhancement

Figure 4. Comparison of agent score distributions for all selected
samples before and after enhancement. The horizontal axis rep-
resents different score intervals. The vertical axis indicates the
proportion of samples falling into each interval.

G. Visualization of Sample Enhancement
Our method includes a novel enhancement action. It en-

ables the selected samples to have the better replay effec-
tiveness by maximizing their agent scores through gradient-
based editing. We presents some comparison results be-
tween original images and the enhanced images in Fig. 3.
We also provide a quantitative comparison in Fig. 4 to show
the agent score distributions for all selected samples before
and after enhancement, where the horizontal axis represents
different score intervals, and the vertical axis indicates the
proportion of samples falling into each interval. We can ob-
serve that after enhancement, there are more samples with
high agent scores. This demonstrates that the gradient-
based enhancement effectively increases agent scores, thus
promoting the replay performance.

H. Visualization of Segmentation Results
In Fig.5, we present the segmentation results on the

Pascal-VOC 2012 validation set using the model trained in
the CSS task. We compare our method with the replay ap-
proach using the randomly selected samples. Thanks to the
proposed mechanism that automatically learns an optimal
policy and uses it to select and enhance the most adequate
samples, our method can be more effective to alleviate the
catastrophic forgetting problem in CSS, thus achieving the
better results.

References
[1] Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. Ssul: Se-

mantic segmentation with unknown label for exemplar-based
class-incremental learning. Advances in Neural Information
Processing Systems, 34:10919–10930, 2021. 1

[2] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu
Cord. Plop: Learning without forgetting for continual se-

mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4040–4050, 2021. 1

[3] Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun,
Jonghyun Kim, and Joongkyu Kim. Adaptive prototype learn-
ing and allocation for few-shot segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8334–8343, 2021. 1



(a) Image (b) Ground Truth (c) Random Selection Strategy (d) Ours

Figure 5. The segmentation visualization comparison results comparison between our method with random selection strategy.


	. Details for Inter-graph Similarity Computation
	. Implementation Details
	. Segmentation Training
	. More Ablation Results
	. Discussion of State Representation Computation
	. Cross-dataset Deployment
	. Visualization of Sample Enhancement
	. Visualization of Segmentation Results

