
E2PN: Efficient SE(3)-Equivariant Point Network (Appendix)

Minghan Zhu
University of Michigan
minghanz@umich.edu

Maani Ghaffari
University of Michigan
maanigj@umich.edu

William A Clark
Cornell University
wac76@cornell.edu

Huei Peng
University of Michigan

hpeng@umich.edu

1. Preliminaries and notation
We first review some basic concepts in group theory and

representation theory briefly. They are highly relevant for
understanding the big picture from a theoretical perspective
of our work and general equivariant deep learning literature.

Groups: A group G is a set equipped with a binary op-
eration ·, satisfying the following conditions: (1) the set is
closed under the operation: x · y ∈ G,∀x, y ∈ G; (2) the
operation is associative: x · (y · z) = (x · y) · z,∀x, y, z ∈
G; (3) there is an identity element e in the set such that
x · e = e · x = x, ∀x ∈ G; (4) there is an inverse x−1 for
each element x in the set such that x · x−1 = x−1 · x = e.
For example, the integer set Z is a group under the addi-
tion operator with identity 0 and inverse −x for any x ∈ Z.
Sometimes we omit the · notation.

Group actions and representations: We say a group
acts on a set X if any element g in G corresponds to a trans-
formation ρ(g) on X , i.e., [ρ(g)](x) ∈ X,∀x ∈ X , such
that ρ(g1) ◦ ρ(g2) = ρ(g1g2),∀g1, g2 ∈ G, where ◦ denotes
function compositions, and [ρ(e)](x) = x, ∀x ∈ X . When
X is a linear space and ρ(g) is linear, we say ρ is a (linear)
representation of G in X . When X is n (finite)-dimensional
linear space, we have a representation ρ : G → GL(n), i.e.,
we can write [ρ(g)](x) as ρ(g)x, where ρ(g) takes the form
of n-by-n invertible matrices and acts by multiplication on
the left. For example, the representations of 2D rotations
SO(2) in R2 are the 2-by-2 orthonormal matrices with de-
terminant 1. We also use (ρ,X) as a shorthand to denote
the representation and space on which it acts.

Equivariance: Given spaces V1 with representation ρ1
of G and V2 with representation ρ2 of G, we say a mapping
ϕ : V1 → V2 is G-equivariant if ϕ◦ρ1(g) = ρ2(g)◦ϕ, ∀g ∈
G. A G-equivariant linear map is also called an intertwiner.
The space of intertwiners is denoted HomG(ρ1, ρ2), homo-
morphisms of group representations ρ1, ρ2 of G.

Subgroups, cosets, and quotient spaces: A subgroup
H of G is a subset of G that is also a group, denoted H ≤ G.

For example, SO(2) ≤ SO(3). Given H ≤ G and g ∈ G,
we can define a (left-)coset as gH = {gh|h ∈ H}. For a
given H , all cosets are either equal or disjoint. Each coset
is of the same size (contains the same number of elements),
and they partition the whole group. The set of cosets forms
a coset space (or quotient space) G/H = {gH|g ∈ G}. In
short, a coset is both a subset in the group and an element
in the quotient space.

Stabilizer subgroup: If a group G acts on set X
by ρ, for x ∈ X , the stabilizer subgroup is defined as
StabG(x) ≜ {g ∈ G|ρ(g)x = x}. By definition, the sta-
bilizer subgroup StabG(eG/H) for the quotient space G/H
is H .

Homogeneous spaces: Assume that a group G acts on a
space X through action ρ, we call X a homogeneous space
of G if G acts transitively on X , i. e., any two elements
in X are connected by a group action, ∀x1, x2 ∈ X,∃g ∈
G, s.t. x1 = ρ(g)x2. A quotient space G/H is a homoge-
neous space of G.

Induced representations: Here is an important known
result [1, 4, 5]: given a representation ρ of subgroup H on
vector space V , one can induce a representation π = IndGHρ
of G for the space of functions F = {f : G/H → V }. It
provides a way to define group actions in function spaces, a
foundation of the research on equivariant feature learning.

2. Definition of the section functions
In Sec. 3.2.2, we define the convolution in a homoge-

neous space as Eq. (4), using the section function s : X →
G, mapping an element in the quotient space to a group el-
ement in the corresponding coset, i.e.,

s(x)H = x, ∀x ∈ X = G/H (8)

In our work, for the continuous case, H = SO(2), G =
SO(3), X = S2, and Eq. (8) can be rewritten as

s(x)n = x,∀x ∈ S2 (9)

1

Since there are generally multiple group elements in a
coset, section functions are not unique. Thus we need
to define the section function to make the convolution
well-defined. For any R ∈ SO(3), we can write R =
Rz(α)Ry(β)Rz(γ) using Euler angles α ∈ [0, 2π), β ∈
[0, π], γ ∈ [0, 2π), and the coset it belongs to is Rn =
{RRz(θ)|θ ∈ [0, 2π)} = {Rz(α)Ry(β)Rz(γ + θ)|θ ∈
[0, 2π)} = Rz(α)Ry(β)n. Thus a natural section from S2

to SO(3) is
s(Rn) ≜ Rz(α)Ry(β) (10)

which removes the last z-axis rotation in z-y-z Euler angle
rotations. In the discretized setup, Eq. (10) does not work
because for Rn ∈ S2′ ⊂ S2, s(Rn) ∈ SO(3) may not be
in SO(3)′. In this case, we just arbitrarily select an element
in each coset as the section so that s′ : S2′ → SO(3)′ sat-
isfies Eq. (8). While the selection is arbitrary, it should be
fixed once selected so that the behavior of the function is
deterministic and consistent for different inputs.

3. The derivation of our proposed convolution
3.1. The equivariance of our convolution

The derivation of the convolution in this paper is mostly
built upon [4]. We do not discover new theorems. Our re-
sult is an application of the existing theoretical results in a
specification that is not previously discussed in the litera-
ture. Here we start from the conclusions in [4] and show
how it leads to our design of convolutions.

We first need to introduce another concept. For any g ∈
G, x ∈ G/H ,

(gs(x))H = g(s(x)H) = g(x) = (s(gx))H (11)

meaning that gs(x) and s(gx) are in the same coset, but
gs(x) and s(gx) are not necessarily equal. We can relate
these two using a function h : G/H ×G → H as:

gs(x) = s(gx)h(x, g) (12)

i.e., h(x, g) ≜ s(gx)−1gs(x). This function h describes
how the representative group element twists beyond jump-
ing to another coset when applied with another group ele-
ment, therefore heavily relying on s. We may denote it as
hs, but we will go with h in the following since we already
selected and fixed s in Sec. 2.

With this h function, we can write down the form of in-
duced representations. Given a space of functions F = {f :
G/H → V }, assuming ρ : H → GL(V) a representation
of subgroup H in V , we define π = IndGHρ : G → GL(F)
as:

[π(g)f](x) ≜ ρ(h(g−1x, g))f(g−1x) (13)

It is shown in [4] that Eq. (13) is a valid representation. De-
note F1 = {G/H → V1} and F2 = {G/H → V2} with

representations (ρ1, V1) and (ρ2, V2) on H , any linear map-
ping F1 → F2 equivariant to the induced representations
IndGHρ1 and IndG

Hρ2 can be written as a cross-correlation
with a twist:

[κ ∗ f](x) =
∫
G/H

κ(s(x)−1y)ρ1(h(y, s(x)−1))f(y)dy

(14)
where the space KC of valid kernels κ : G/H →
Hom(V1, V2) is equivalent to the space:

KD = {κ : H\G/H → Hom(V1, V2)|
κ(x) = ρ2(h)κ(x)ρ

x
1(h)

−1,∀x ∈ H\G/H, h ∈ Hη(x)H}
(15)

where H\G/H = {HgH|g ∈ G} is the set of double
cosets in which HgH = {h1gh2|h1, h2 ∈ H} is called
a double coset. η : H\G/H → G is a section function for
double cosets. Hη(x)H = {h ∈ H|hη(x)H = η(x)H}
is the set of stabilizers for double coset x ∈ H\G/H ,
and ρx1 is the representation of Hη(x)H defined as ρx1(h) =
ρ1(η(x)

−1hη(x)) for h ∈ Hη(x)H .
While the above looks a bit involved, recall that in

this work, we use scalar-type features, meaning that we
choose the trivial identity representation for the subgroup
H = SO(2), i.e., ρ1(h) = IdV1

, ρ2(h) = IdV2
∀h ∈ H ,

which simplifies the equations. The induced representation
π = IndGHρ : G → GL(F) is in the form:

[π(g)f](x) = f(g−1x),∀g ∈ G, x ∈ G/H (16)

The convolution in Eq. (14) now looks like:

[κ ∗ f](x) =
∫
G/H

κ(s(x)−1y)f(y)dy

=

∫
G/H

κ(y)f(s(x)y)dy
(17)

which is consistent with Eq. (4) in the main paper. The
equivalent space of kernels is:

KD = {κ : H\G/H → Hom(V1, V2)} (18)

3.2. The specific form of our kernel

In this paper, we work with G = SE(3) and H = SO(2).
In the following, we derive G/H and H\G/H in this setup
since they do not appear commonly in the literature.

The group SE(3) = SO(3)⋉R3 is the semi-direct prod-
uct of SO(3) and R3 (the latter is a normal subgroup).
We can denote a group element of SE(3) as (R, t) where
R ∈ SO(3), t ∈ R3, such that the group action · is defined
as (R1, t1) ·(R2, t2) = (R1R2, R1t2+ t1), and accordingly
the group inverse is defined as (R, t)−1 = (R−1,−R−1t).

The group SO(3) can be written as a subgroup of
SE(3) as (R, 0). Using Euler angles we have ∀R ∈

SO(3),∃α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π), such that
R = Rz(α)Ry(β)Rz(γ), where Rz represents rotation
around the z-axis, and similarly for Ry . We also have
SO(2) ∼= {(Rz(γ), 0) ∈ SE(3)|γ ∈ [0, 2π)}.

Therefore, a left coset of H = SO(2) in G = SE(3)
is gH = {gh|h ∈ H} = {(Rg, tg) · (Rz(γh), 0)|γh ∈
[0, 2π)} = {(Rz(αg)Ry(βg)Rz(γg + γh), tg)|γh ∈
[0, 2π)}, meaning that a left coset can be parameter-
ized by αg, βg, tg . Then the set of left cosets G/H
is homeomorphic to the Cartesian product S2 × R3 =
{(Rz(α)Ry(β)n, t)|α ∈ [0, 2π), β ∈ [0, π], t ∈ R3},
where S2 is the surface of a sphere, n = t(0, 0, 1) is the
unit vector pointing to the north pole. Here we abuse the
notation (xn, y) as an ordered pair in the set S2 × R3. It
can be understood as a point x on a sphere centered at some
point y in R3. The group G = SE(3) acts on G/H by left
multiplication: (Rg, tg)(Rn, t) = (RgRn, Rgt+ tg).

We further investigate the double coset space H\G/H .
An element in the set can be written as HgH =
{h1gh2|h1, h2 ∈ H} = {(Rz(αg + γh1

)Ry(βg)Rz(γg +
γh2

), Rz(γh1
)tg)|γh1

, γh2
∈ [0, 2π)}. We can use t(x, y, z)

to specify the coordinate of an element in R3, and we
can always rewrite t(x, y, z) = Rz(γt)t(rg, 0, zg) where
rg =

√
x2 + y2 ≥ 0 and γt = arctan 2(y, x). Then we

can rewrite

HgH = {(Rz(αg + γh1)Ry(βg)Rz(γg + γh2),

Rz(γh1 + γt)t(rg, 0, zg))|γh1 , γh2 ∈ [0, 2π)} (19)

Let us rename γ1 ≜ γh1
+γt, θg ≜ αg −γt, γ2 ≜ γg +γh2

,
then we have

HgH =

{(Rz(θg + γ1)Ry(βg)Rz(γ2), Rz(γ1)t(rg, 0, zg))|
γ1, γ2 ∈ [0, 2π)} (20)

Now it is clear that an element in H\G/H can be de-
termined by four parameters (θg, βg, rg, zg), with θg ∈
[0, 2π), βg ∈ [0, π], rg ≥ 0, zg ∈ R. We denote an element
in H\G/H as HgH(θg, βg, rg, zg). We have H\G/H ∼=
S2 × R+ × R. Geometrically, each point (rg, zg) in the
R+×R plane corresponds to a circle around the z-axis with
radius rg at height zg . On the other hand, θg, βg parameter-
izes a point on the sphere S2.

It follows that we can define a kernel κ ∈ KD = {κ :
S2 × R+ × R → Hom(V1, V2)}, and then injectively map
it to κ ∈ KC0 = {κ : S2 × R3 → Hom(V1, V2)}. The fact
that S2×R+×R ⊊ S2×R3 implies that KD ∼= KC ⊊ KC0

.
In other words, there is a certain constraint on KC0

to form
the actual set of valid equivariant kernels KC . As shown
in [4], the general form of the constraint can be written as:

κ(hx) = ρ2(h)κ(x)ρ1(h(x, h)−1), (21)

for κ ∈ KC , x ∈ G/H, h ∈ H . As discussed in Sec. 3.1,
ρ1 and ρ2 are both identity; thus Eq. (21) becomes κ(hx) =
κ(x), which is equivalent to Eq. (6) in the main paper in our
specific case.

4. Equivariance of element-wise non-linear
layers and normalization layers

For a feature map of shape B × C × N × A, where B
is the batch size, C is the feature channel, N is the number
of spatial points in R3, A corresponds to the spherical co-
ordinates in S2′, a batch normalization (BatchNorm [6]) is
to calculate the mean and variance across the B × N × A
channels and apply a constant scaling factor and shift for
each B × N × A tensor. For instance normalization (In-
stanceNorm [8]), one just need to change B × N × A to
N × A. In either case, consider the feature map as a func-
tion f : N × A → RB×C , a BatchNorm or InstanceNorm
(denoted N) behaves like an element-wise operation, i.e.,

[N ·f](x) = af(x)+ b = N ·f(x), ∀x ∈ S2′×R3 (22)

since a, b are constant vectors. Here · denotes applying a
transformation.

Recall that our induced representation Eq. (16) is in a
similar form of a regular representation, which is realized
by a change of coordinate without modifying the func-
tion value. Such a representation π is commutative with
element-wise operations (denoted as E):

[(π(g) ◦ E) · f](x)
= [π(g) · (E · f)](x) = [E · f](g−1x) = E · f(g−1x)

= E · [π(g) · f](x) = [E · (π(g) · f)](x)
= [(E ◦ π(g)) · f](x),∀g ∈ G (23)

Or we can say:

π(g) ◦ E = E ◦ π(g),∀g ∈ G (24)

It shows that element-wise non-linear layers like ReLu
and normalization layers, including BatchNorm and Instan-
ceNorm, are G-equivariant.

5. Prediction heads and loss functions
5.1. Pose estimation task

The pose (rotation) estimation task is fulfilled with a pre-
diction head designed as shown in Fig. 1. The inputs to the
prediction head for each pair of point clouds are two S2′×C
features, where C is the number of feature channels. We
call the S2′ coordinates anchors in this section. We apply
Ri ∈ I to the second point-cloud mentally, correspond-
ing to 60 permutations of the anchors for f2. If the two
point clouds are different exactly by a rotation in I, then

Figure 1. Illustration of the prediction head for rotation estimation. The numbers show the sequence of operations. The colors in the top row correspond to
different spherical anchors. The shade of color after step 4 and after step 5 represents the matching scores for pairs of anchors. Darker means higher.

one of the permuted f2 should be exactly the same as f1.
We stack the features together and use several linear layers
to find the match. Notice that the matching is defined as
a binary classification problem for each pair of anchors in-
stead of a multi-class classification problem for the overall
feature corresponding to a certain rotation. It aligns better
with the underlying geometry because a subset of anchors
may align even under a wrong rotation since any rotations
in SO(2) keep the north-pole and south-pole vertices static.
We can find the correct rotation class by summing over all
anchor pairs and picking the rotation with the highest over-
all matching score. After finding the correct permutation
(equivalent to the Ri ∈ I ⊂ SO(3)), we flatten the feature
and regress the residual rotation using quaternions in a way
similar to [3].

Accordingly, the loss functions are the binary cross en-
tropy loss for anchor-pair matching and L2 loss on the resid-
ual rotation regression.

5.2. Object classification task

For the classification task, we follow a similar philoso-
phy as the rotation estimation task. Here we do not have
a pair of inputs from which to find the relative rotation.
Therefore, we imagine that there is a reference object for
each category, with a canonical permutation of the features
representing the underlying canonical pose. We learn the
features of the reference object in each class and use them
to classify input point clouds.

The core learnable parameter is the reference feature X
of shape S2′ × C × N where N is the number of object
classes. We can denote Xn ∈ RS2′×C as the reference
feature for object class n. We directly calculate the inner
product between the reference features and the permuted
input features. The score of rotations under every object-
class hypothesis is calculated by summing over the inner
products across all anchors. The score of each class is de-

Figure 2. Illustration of the prediction head for object classification. The numbers show the sequence of operations. The solid colors in the top row correspond
to different spherical anchors. The line colors on the top right represent different semantic classes. Here we only use three classes for illustration. The shade
of color after step 2 represents the scores. Darker means higher. ⟨·, ·⟩ denotes the inner product of finite-dim vectors.

fined as the maximum rotation score in each class hypothe-
sis. We first generate the final prediction of the object class
using the class score. Then we go back to the inner product
matrix corresponding to this class and use it as the anchor-
matching score prediction. Finally, the best rotation in this
class is used to retrieve the specific permutation of the in-
put feature, which forms a rotation-invariant feature for this
object.

The basic assumption here is that only the correct ob-
ject class yields a high-quality matching under the actual
rotation. Thus we first solve for the classification and then
determine the optimal rotation only in this class, which is
used for generating rotation-invariant features.

The loss functions applied are the cross entropy loss for
object classification and the binary cross entropy loss for
anchor-matching prediction.

5.3. Keypoint matching task

For the keypoint matching task, there is no definition of a
canonical pose for a local patch of points around a keypoint.
Because the feature learning in this task does not involve
the corresponding patch in another point cloud, we cannot

define relative poses as well. Therefore, we do not apply
the permutation layer in this task. Instead, we simply follow
the same design as in [3] using GA pooling, except that our
attentive pooling is not over I, but S2′.

The loss function applied here is the batch-hard triplet
loss, also consistent with [3].

6. More specifications in the experiments
The batch size used in the efficiency comparison in

Tab. 1 is specified in Tab. 5. For the keypoint matching task,
the number of global scans processed (ng) and the number
of local patches extracted from each global scan (nl) define
the input size. We use ng × nl as the notation in Tab. 5.

The training optimizer and learning rate schedule follow
the default setup of EPN [3]. The number of feature chan-
nels (i.e., width) and the number of network layers (i.e.,
depth) also follow the settings in EPN, except that for the
object classification task on ModelNet40, we reduced the
backbone width by half compared with the original EPN
setting (first layer width changed from 64 to 32, later layers
in the backbone changed accordingly). The network width
is the same across KPConv [7], EPN, and our E2PN in

Table 5. The batch sizes used in the efficiency comparison in terms of the GPU memory consumption and the running speed between EPN [3] and our
method on three tasks as in Tab. 1.

Tasks ModelNet40 Pose ModelNet40 Classification 3DMatch Keypoint Matching

Modes Training Inference Training Inference Training Inference

Batch size 8 8 12 24 1×16 8×24

our experiments, therefore their comparison remains valid.
For all the three networks, the classification accuracy is not
harmed by the width reduction.

Due to the page limit in the main paper, we only men-
tioned ”all results are trained and tested with rotational aug-
mentation” in the classification task section. Here we pro-
vide more details. During training, random rotations are
applied, following the practice in EPN. EPN and our net-
work are equivariant to a discretization of SO(3); therefore,
we apply rotation augmentations to let the network interpo-
late among the discretizations well and regress the residual
rotation adding to the discretized rotations. During testing,
we use fixed rotations for each test input so that results are
repeatable and comparable.

We also provide more details here on the steerable CNN
baseline based on ESCNN [2] in the classification task ex-
periment. [2] established a general framework for steerable
CNNs equivariant to O(3) and its subgroups. It is relevant
to the discussion in our paper and reported results on shape
classification on the ModelNet10 dataset, which is a similar
task to our experiments on ModelNet 40 dataset. Therefore
we include it as one of our baselines. While the library for
this work is open-sourced, the specific implementation of
the network for the tasks mentioned in [2] is not provided.
Therefore we implemented the network using the library ac-
cording to the specifics stated in [2]. We also implemented
the data conversion to transform the shapes into voxel grids
as described in [2]. The Gaussian kernel radius in voxel
generation and the learning rate are not specified in [2], so
we did a hand tuning and reported the result under the best
settings. We applied the final values σ = 0.03 for the Gaus-
sian kernel in voxel generation and lr = 10−3 as the initial
learning rate. The multiplicity of irreps in the backbone
is not specified either, and we found that using band-limited
regular representations yields better results than using equal
proportions of irreps. Thus we use multiple and-limited reg-
ular representations and align the total number of channels
to the numbers specified in [2]. We implemented the SO(3)
equivariant version with frequency up to 3. Among the in-
variant maps discussed in [2], group pooling and norm pool-
ing are implemented in their library. Group pooling is not
recommended for continuous groups in [2]; therefore, we
use norm pooling as the invariant layer.

The result is shown in Table 3 in the main paper. We
did not compare the efficiency because the forms of input

(voxels vs. point clouds) and network structures (number
of layers, channels, and connections) are both quite differ-
ent. We can see that the network of [2] underperforms both
EPN [3] and our network. One of the reasons could be that
both EPN and our model for the classification task are also
trained with the auxiliary task of rotation estimation (for the
GA pooling layer or the permutation layer). In contrast, [2]
is only trained with the classification task as described in
their paper, which may cause more information loss in the
invariant layer. Another reason could be that voxel inputs
lose some details compared with point clouds. Transition-
ing from ModelNet10 to ModelNet40 dataset may require
some scale-up of the network in terms of depth and width
and some other careful tuning.

References
[1] Tullio Ceccherini-Silberstein, A Machı̀, Fabio Scarabotti, and

Filippo Tolli. Induced representations and Mackey theory.
Journal of Mathematical Sciences, 156(1):11–28, 2009. 1

[2] Gabriele Cesa, Leon Lang, and Maurice Weiler. A program
to build E(N)-equivariant steerable CNNs. In International
Conference on Learning Representations, 2022. 6

[3] Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall
Hill. Equivariant point network for 3D point cloud analysis.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 14514–14523, 2021. 4, 5, 6

[4] Taco S Cohen, Mario Geiger, and Maurice Weiler. Inter-
twiners between induced representations (with applications to
the theory of equivariant neural networks). arXiv preprint
arXiv:1803.10743, 2018. 1, 2, 3

[5] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016. 1

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015. 3

[7] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019. 5

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 3

	. Preliminaries and notation
	. Definition of the section functions
	. The derivation of our proposed convolution
	. The equivariance of our convolution
	. The specific form of our kernel

	. Equivariance of element-wise non-linear layers and normalization layers
	. Prediction heads and loss functions
	. Pose estimation task
	. Object classification task
	. Keypoint matching task

	. More specifications in the experiments

