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1. Network Details
1.1. Architecture

All neural fields in our network are implemented by
multi-layer perceptrons (MLPs). For neural SDF field Fd

and radiance field Fc, we follow VolSDF [7]’s default set-
ting, where Fd is a 8-layer MLP with hidden dimension 256
and Fc is a 4-layer MLP with hidden dimension 256. The
dimension of the latent code output by Fd (i.e. z(x)) is 256,
and a skip connection is used in the 4th layer in Fd. The
input position x and view direction v are encoded by sinu-
soidal positional encoding [3], with a maximum frequency
band of 6 for x and 4 for v, the same as in VolSDF [7]. The
emitter semantic field Fe is a 2-layer MLP with hidden di-
mension 128, while material fields Fρ, Fa are 3-layer MLPs
with hidden dimension 64.

1.2. Implementation Details

The network model, as well as the training and evalua-
tion scripts, are implemented with Pytorch [4]. The network
is trained per-scene on a single NVIDIA Tesla V100 GPU.
We adopt two stage training scheme, the training details of
the 2 stages are as follows:

Training of geometry and radiance fields. We jointly
optimize SDF network Fd, radiance network Fc and emitter
semantic network Fe in this stage. We optimize our model
for 200k iterations in this stage, which takes about 15 hours
for a scene. The training loss

Lgeo =λ1Leikonal + λ2Ldepth + λ3Lnormal

+ λ4Lsmooth + λ5Lbubble (1)
L1 =Lrgb + λgeoLgeo + λemiLemi (2)

*Corresponding author.

where the weight hyperparameters are λgeo = 1, λemi =
0.5, and λ2 = 0.1, λ3 = 0.05, respectively. For λ1, λ4, λ5,
since the training process is further divided into 3 steps (i.e.
warm-up, bubble and smooth), their values are adjusted dur-
ing the training accordingly:

1. In warm-up step, λ5 = 0, λ1 = 0.1, λ4 = 0.

2. In bubble step, λ1 = λ4 = 0, λ5 = 0.5.

3. In smooth step, λ5 = 0, λ1 = 0.1, λ4 = 0.01.

The number of iterations assigned to the three steps are 50k,
100k and 50k in sequence.

We use error-guided adaptive sampling in bubble step,
where the pruning threshold Pmin = 0.05.

Training of material and emission fields. In this stage,
we use importance sampling and Monte Carlo estimation to
compute the rendering result. We generate N outgoing rays
to perform Monte Carlo integration. In practice, the sample
rate N is set to 16, which is a trade-off between quality and
performance.

We jointly optimize Fa, Fρ,L[·] for 100k iterations. The
bottleneck of computational cost lies in the prediction of in-
cident radiance Lk

s , which grows proportional to the sample
rate N . With N = 16, the training lasts for about 2-3 days.

2. Dataset Details
Our synthetic dataset contains 12 scenes in total: 6 bed-

rooms, 2 living rooms, 2 dining rooms and 2 kitchens. All
the scenes are well-designed by artists with detailed geom-
etry and fine textures. We use GPU-accelerated path tracing
algorithm [1] to render the images, which can create photo-
realistic rendering results with global illumination. All data
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Figure 1. Display of indoor scenes in our dataset.

are rendered on a NVIDIA RTX 3090 GPU, with 4096 sam-
ples per pixel (spp). The rendering time is roughly 15 sec-
onds per image. Fig. 1 displays some of the indoor scenes
in our dataset.

All images in our dataset are annotated by ground truth
camera intrinsics and poses, normal maps, depth maps and
emitter semantic masks.

3. BRDF Model

We use GGX microfacet BRDF model [5] to approxi-
mate the surface reflection properties by a set of material pa-
rameters, including diffuse albedo Kd, specular albedo Ks

and roughness ρ. In our implementation, we refer to Unreal
Engine [2]’s implementation of microfacet BRDF model.
The BRDF (bidirectional reflectance distribution function)
fr(v,d;N,Kd,Ks, ρ) (where v and d are view and light-
ing directions, and N is the surface normal) can be decom-
posed into diffuse and specular components and computed
by

fr(v,d) = fd(Kd) + fs(v,d;N,Ks, ρ) (3)

fd(Kd) =
Kd

π
α = ρ2 (4)

fs(v,d;N,Ks, ρ) = D(α,N, h)G2(α,N,v,d)F (Ks,d, h)
(5)

where fd and fs are the diffuse and specular components re-
spectively, while D,G2, F are the distribution, Fresnel and

geometric terms, defined as

D(α,N,h) =
α2

π((α2 − 1)(N · h)2 + 1)2
(6)

S(α,N,v,d) = (N · d)
√
α2 + (N · v)2(1− α2) (7)

G2(α,N,v,d) =
1

2(S(α,N,v,d) + S(α,N,d,v))
(8)

lum(C) = 0.213C.r + 0.715C.g + 0.072C.b (9)

F90(Ks) = min(
lum(Ks)

0.04
, 1) (10)

F (Ks,N,d) = Ks + (F90(Ks)−Ks)(1− (N · d))5
(11)

In importance sampling and Monte Carlo integration, we
also need to calculate the PDF value p(v,d) corresponding
to the view and lighting direction:

wd =
lum(Kd)

lum(Kd) + lum(Ks)
(12)

p(v,d) = wdpd(v,d) + (1− wd)ps(v,d) (13)

pd(v,d) =
N · d
π

(14)

G1(α,N,v) =
2√

1 + α2(1−(N·v)2)
(N·v)2 + 1

(15)

ps(v,d) =
D(α,N, h)G1(α,N,v)

4(N · v)
(16)

where pd and ps are the diffuse and specular components,
which are mixed according to the luminance of Kd and Ks.

4. Details of Bubbling and Adaptive Sampling
Intermediate results in bubble step. Fig. 2 presents the
process of how the missing objects are reconstructed by our
bubbling method. The chandelier is missing initially at 50k
iterations. In the early stage of bubble step, the light balls
are reconstructed rapidly (55k), since they are relatively
large inside the chandelier. On the other hand, thin com-
ponents (e.g. poles) grow slowly (70k). Eventually (150k)
the entire chandelier is successfully reconstructed.

Visualization of error-guided sampling map during
training. As shown in Fig. 3, at the training iteration
of 50k (i.e. the start of bubble step), the chandelier is
completely ignored and thus the corresponding pixels in
the PDF map have high values. As the training proceeds
to 80k iterations, the light balls have already been well-
reconstructed, with chandelier poles still missing. There-
fore, the value of pixels corresponding to light balls are re-
duced to 0, whereas chandelier pole pixels still need to be
further sampled.
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Figure 2. Intermediate results in bubble step.

Table 1. Comparisons of per-scene novel view PSNR.

Ours NeRF Instant-NGP NeuRIS MonoSDF
syn 1 28.03 26.24 25.8 25.53 27.37
syn 2 30.09 29.27 27.34 24.30 24.83
syn 3 27.46 25.73 26.58 24.30 24.48
syn 4 29.64 27.99 25.95 26.93 26.67
syn 5 27.71 26.93 16.82 24.38 26.03
syn 6 28.55 27.27 16.27 25.21 26.49
syn 7 28.04 27.65 24.67 25.18 24.67
syn 8 27.83 25.31 27.72 24.36 25.39
mean 29.70 27.09 23.89 25.02 25.74
real 1 26.63 26.48 19.10 25.91 26.21
real 2 28.01 27.21 26.32 23.87 24.38
real 3 24.58 24.11 23.29 23.31 22.72
real 4 21.39 20.86 19.23 19.82 20.05
mean 25.15 24.66 21.99 23.22 23.34

Table 2. Comparisons of per-scene normal angular error and depth L1 loss.

Normal-Angular-L1 ↓ Depth-L1 ↓
Ours NeuRIS MonoSDF Ours NeuRIS MonoSDF

syn 1 0.040 0.051 0.036 0.014 0.240 0.010
syn 2 0.030 0.041 0.035 0.019 0.331 0.048
syn 3 0.054 0.080 0.073 0.021 0.319 0.061
syn 4 0.053 0.071 0.065 0.068 0.312 0.103
syn 5 0.064 0.096 0.058 0.025 0.227 0.034
syn 6 0.057 0.082 0.054 0.051 0.355 0.043
syn 7 0.057 0.071 0.076 0.065 0.335 0.099
syn 8 0.072 0.071 0.064 0.016 0.274 0.033
mean 0.053 0.070 0.058 0.035 0.299 0.054

5. Additional Experimental Results

Novel view synthesis. Tab. 1 displays quantitative results
of per-scene novel view PSNR. It turns out that our method
outperforms all of the baselines, benefiting from our pre-
cise reconstruction of small objects and proper handling of
shape-radiance ambiguity. Qualitative results are presented
in Fig. 6. NeRF, NeuRIS and MonoSDF fails to reconstruct
small objects such as chandeliers and lamp poles, while
NeRF and Instant-NGP also sufffers from fractured recon-
struction results. While Instant-NGP usually capture most
high-frequency details, it likely overfits to single-view radi-

ance and fails to ensure multi-view geometry consistency in
indoor scenes, leading to poor novel view synthesis results
with floating artifacts.

Geometry Reconstruction. Tab. 2 displays quantitative
comparisons of per-scene normal angular L1 error and
depth L1 error between our method and baselines. The def-
inition of normal angular L1 error is

Lnormal = ∥1− N̂ ·N∥1 (17)

Our method also outperforms NeuRIS and MonoSDF, indi-
cating superior 3D reconstruction quality. Fig. 7 presents
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Figure 3. Visualization of error-guided sampling map during
training. The first row displays intermediate normal reconstruc-
tion results, while the second row displays the corresponding error
PDF map.
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Figure 4. Comparisons between GT material and predictions.
Note that our optimization does not require supervision from GT
material dataset but we still produce plausible results.

qualitative comparisons of the reconstructed normal maps.
Our method can even recover high-frequency details on ge-
ometry, such as the spikes on the ball.

Material Decomposition. Figs. 4 and 8 presents qualita-
tive results of the decomposed diffuse albedo Kd, specular
albedo Ks and roughness ρ. The material parameters are
not directly supervised by GT labels, but we produce plau-
sible results.

Scene editing. With the intrinsic decomposition results,
we can enable photo-realistic scene editing tasks such as
material editing and relighting. Fig. 9 shows qualitative re-
sults of scene editing results in both real and synthetic data.
We explore mirror insertion (top-left and bottom-right), tex-
ture editing (top-right and mid-left), object insertion (mid-
right) and relighting (bottom-left). Note that the edited
specular reflections (on mirrors and inserted metal ball) are
consistent with the surroundings. On account of our raytrac-
ing algorithm, our method is capable of casting shadows of

the inserted object (see the shadows of the inserted ball on
the sofa).
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Figure 5. Qualitative comparisons of reconstructed depth map and normal map.
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Figure 6. Qualitative comparisons of novel view synthesis on synthetic data and real data. Zoom in for details.
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Figure 7. Qualitative comparisons of normal estimation on synthetic data and real data.
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Figure 8. Qualitative results of decomposed materials.
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Figure 9. Qualitative results of scene editing and relighting.
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