
NerVE: Neural Volumetric Edges for Parametric Curve
Extraction from Point Cloud

– Supplementary Material

Xiangyu Zhu12∗ Dong Du1* Weikai Chen3 Zhiyou Zhao1

Yinyu Nie4 Xiaoguang Han12†

1SSE, CUHKSZ 2FNii, CUHKSZ 3Tencent America 4Technical University of Munich

In this supplementary material, we provide additional
details of our method in Sec. A, data collection setup in
Sec. B, and additional ablation study, numerical and visual
results in Sec. C.

A. Details of Method
In this section, we present network specifications for

learning NerVE and list the post-processing details for the
PWL curves refinement and the final parametric curve fitting.

A.1. Network Details

Encoder. We use a simplified dense PointNet++ [6] as our
encoder. Specifically, given a point cloud of shape (N, 3)
(N is the point number), we first find k-nearest neighbors
(k = 8 as in [1]) of each point and reform them into a
tensor of shape (N, 8, 3) as input. Then we apply a network
consisting of 4 layers of MLP, where the latent size is 128
and the output shape is (N, 8, 128). We finally obtain point
features of (N, 128) by using a max pooling function in the
second dimension. After that, the point features are fused
as cube features (32, 32, 32, 128) (32 is the grid resolution)
by average pooling when multiple points appear in the same
cube. Three 3D-convolution layers are then applied to the
cube features, where the kernel size, stride, and padding
are 3, 1, and 1 respectively. We use Leaky ReLU as the
activation function. The final shape of the feature grid is
(32, 32, 32, 128).

Decoder. We adopt a 5-layer MLP as the decoder to predict
edge occupancy, orientations, and edge point position. The
latent layer size of the MLP is 128. Each cube in the feature
grid has a feature size of 128, which is directly decoded
by the occupancy decoder into a one-dimensional scalar. It
is decoded by a position decoder into three floats. For the

*Xiangyu Zhu and Dong Du contribute equally.
†Corresponding author’s email: hanxiaoguang@cuhk.edu.cn

orientations decoder, as shown in Figure 2 in our paper, we
first concatenate the cube feature with its three adjacent cube
features, which means the input to the orientations decoder
is of shape (3, 128 + 128). The orientations decoder takes
the concatenated feature as the input and produces three
one-dimensional scalars. Sigmoid activation is used as the
last layer in both the occupancy decoder and the orientations
decoder. The output of our position decoder is clipped into
[−1, 1]3 to be consistent with the coordinate system of the
input point cloud (see Input Point Cloud Pre-processing in
Sec. B for more details on coordinate transform).

A.2. Parametric Curve Extraction

We introduce the processing details in parametric curve
extraction, including the refinement of PWL curves and para-
metric fitting. Note that the whole procedure of extraction is
fast, where the parametric curve extraction takes only 0.018
seconds per shape on average from all shapes in the test set
(472 shapes), where the average vertex number on shape
curves is about 22000.

PWL Curves Refinement. To refine the predicted PWL
curves from our network for parametric curve extraction,
we propose several post-processing steps. In the following
settings, the predicted PWL curves are regarded as an undi-
rected graph, where the definition of vertex degree is the
same as in general graph theory.
Step 1: Point Reconnection. We first find all vertices with
degree 1 and denote such vertices as 1-d vertices. Then we
add an edge between two 1-d vertices if the distance of these
vertices is smaller than a given threshold δr meanwhile, their
tangent vectors should be consistent enough. See Fig. 1 for
an illustration of reconnection as well as the definition of
consistency between tangent vectors. Take Fig. 1 (b) as an
example, the consistency of tangent vectors is defined by
t⃗1 · t⃗2 + t⃗2 · t⃗3. If ∥−−→p1p2∥ < δr and t⃗1 · t⃗2 + t⃗2 · t⃗3 >

√
2

(
√
2 is fixed, which works well in all our experiments), we

1



Figure 1. (a) An example that requires curve reconnection. (b)
Let p1, p2 be two close 1-d vertices. t⃗1, t⃗3 are tangent vectors for
p1, p2 (defined as in the PWL curves) and t⃗2 = −−→p1p2/∥−−→p1p2∥.

can connect p1 and p2.

Figure 2. Examples of extra edges. (a) A short protruding edge will
be removed if its vertex number is less than Np (Np = 5 in our
experiments). (b) A long extra edge is also removed because of the
B-Rep constraints. Such long extra edges usually appear around
non-sharp edges of shapes (referring to Fig. 4), and it is difficult
for neural networks to distinguish them from sharp edges.

Step 2: Extra Edges Removal. As shown in Fig. 2, there
could be extra edge segments in the space. To remove these
outliers, we first find all paths which start with a 1-d vertex.
A path on the PWL curves graph is defined by adding con-
straints: deg(Vin) = 2,deg(Vend) ̸= 2, where Vin is interior
vertex and Vend is the end vertex of the path and deg(V )
means the degree of vertex V on PWL curves graph. Then
we remove one from these paths if its vertex number is less
than Np. In this way, short extra edges can be removed,
and there remain long extra edges that failed to reconnect
in Step 1. We provide an option on keeping long protruding
edges according to users’ preference on conforming to the
B-Rep constraints. In particular, long protruding edges are
removed if B-Rep constraints are strictly required and kept
otherwise. In our experiments, we choose to impose the
B-Rep constraints for final parametric curves and remove
such long protruding edges.
Step 3: Multi-paths Handling. In our method, all ver-
tices with degree > 2 are regarded as endpoints of curves.
However, there could be multiple close paths between two
endpoints as shown in Fig. 3, When curves are close to edges
or faces of the cube, the network might predict the additional
point causing multiple paths. To handle this issue, we can
randomly select one of the paths and delete others since all
paths are close in geometry, and we finally fit the paths in
the sense of least squares. Two paths from the same pair of

Figure 3. (a) There are multiple paths between two degree> 2 ver-
tices(endpoints). (b) 2D illustration for generation of multi-paths.
When a curve is near the edges or faces of the cube, the network
might predict the additional point, which can cause multiple paths
between two endpoints.

endpoints are defined to be close if the Chamfer distance of
these two paths is lower than a given threshold δp. We repeat
this process until all extra paths are eliminated.

δr Value 2l 3l 4l 5l
CD↓ 0.0112 0.0066 0.0051 0.0121
HD↓ 0.2246 0.1924 0.1844 0.2870

Np Value 3 4 5 6
CD↓ 0.0054 0.0054 0.0051 0.0061
HD↓ 0.2046 0.2010 0.1844 0.1847

δp Value 0.5l 2l 4l ∞
CD↓ 0.00509 0.00508 0.00509 0.00512
HD↓ 0.18442 0.18442 0.18442 0.18442

Table 1. Different CD and HD errors of final parametric curves
when δr, Np, δp taking different values. l = 2/r is the edge length
of a cube in the grid (r = 64 for resolution 643). By default,
δr = 4l, Np = 5, δp = 2l. In the experiments, one parameter
value changes and other parameters remain the default values. For
δp, the value of ∞ means we handle all possible multi-paths cases
without checking the Chamfer distance.

Choices of Parameters. Three parameters are discussed
in PWL curves refinement: δr, Np, δp. To choose appro-
priate values, we compare the CD and HD errors of the
final parametric curves in different parameter settings, as
shown in Table 1. Based on the comparison, we choose
δr = 4l, Np = 5, δp = 2l, where l = 2/r (r = 64 for
resolution 643) is the edge length of a cube in the grid.

Parametric Curve Fitting. After obtaining paths between
pairs of endpoints or closed paths, we can use an off-the-shelf
spline fitting library for parametric curve fitting on these
paths. Specifically, we use the function make lsq spline from
Scipy, which can fit given points in the sense of least squares
with BSpline functions. For our setting of BSpline functions,
the order of spline is 3; the number of knots (except the
knots for start and end points) is half of the number of path
vertices; knots are uniformly sampled in [0, 1]. Note that the
positions of all endpoints are fixed during fitting.



For closed paths, we first try direct 3D circle fitting on
one closed path since most closed curves in the ABC dataset
are circles [7]. If the fitting error is large, which means
the closed path is probably not a circle, we simply apply
the previous spline fitting to it. Here, the threshold for the
fitting error is fixed as 0.001, which works fine in all our
experiments. For 3D circle fitting, we use a feasible and
simple approach. We first use principal component analysis
(PCA) on points and then convert it to a 2D circle fitting
problem, which can be easily solved, finally we map the
fitted 2D circle into R3 by PCA and obtain the 3D circle.

B. Details of Dataset
In this section, we provide more details about data pro-

cessing, including data cleaning of raw ABC dataset [4],
ground truth data preparation of NerVE attributes, and pre-
processing for input point clouds.

Figure 4. Differences between sharp edge and non-sharp edge. We
highlight the sharp edges on the left figure, while highlight both
sharp and non-sharp edges on the right figure.

Data Cleaning. As discussed in our paper, the dataset has
to be cleaned due to data missing, shape repetition, and lack
of sharp edges. For those shapes with little difference in
geometry or structure, we regard them as repeated. As for
the lack of sharp edges, there are cases where a shape does
not possess any sharp edges (e.g. a sphere) or only has a few
sharp edges. Here we use the sharp edges originally defined
in the ABC dataset [4] and Fig. 4 shows the difference. To
filter out the mentioned shapes, we manually examined all
shapes from the first chunk and obtained 2,364 shapes for
network learning.

Ground Truth Preparation. To obtain the ground truth
of cube attributes in NerVE, we first obtain the PWL curves
from the GT parametric curves by uniform sampling and
denote the PWL curves as the GT PWL curves. In a grid
of 323 cubes (here we assume the grid resolution is 32), all
cubes intersected with the GT PWL curves are labeled True,
which are occupied cubes. Similarly, all faces intersected
with the GT PWL curves are labeled True. Intersections
of GT PWL curves with cubes can be easily calculated by
considering each line segment in GT PWL curves. In the

occupied cubes, we take the midpoint of the truncated GT
PWL curve inside the cube as the point position.

Input Point Cloud Pre-processing. To benefit network
training, we normalize the input point cloud and GT point
positions of cubes. For the input point cloud, we first subtract
the point position from its k nearest neighbors for each point,
then multiply by a factor of r (r = 32 for resolution 323).
For the GT global point positions, we convert it to the local
coordinates of its cube, where the center of a cube is the new
origin, and the axes are scaled by r (r = 32 for resolution
323). In this way, the range of the GT point position becomes
[−1, 1]3.

C. More Details of Experiments
In this section, we give more details about the experi-

ments, such as baseline settings in the comparison and a
detailed explanation of cube point choice in the ablation
study. Finally, we show more results of our method in Fig. 6.

Baseline Settings. In our experiments, we adopt VCM [5],
EC-NET [8], and PIE-NET [7] as baselines to evaluate our
proposed method. Specifically, we use the implementation
of VCM in the CGAL library [2]. Given a point cloud for
testing, we compute the Voronoi covariance at each point,
where the offset radius is 0.2, the convolution radius is 0.25,
and the pareto-optimal threshold is 0.24. When a Voronoi
covariance value is larger than the threshold, we consider
the corresponding point to belong to an edge. For EC-NET
and PIE-NET, we utilize the released source codes and pre-
trained models to test the input point cloud with their speci-
fied normalization, and then transform the outputs to align
with the ground truth for a fair evaluation.

Time Consumption. The average inference times of VCM,
EC-Net, PIE-Net, and Ours are 2.06, 0.84, 0.52, and 0.15
seconds, respectively. For post-processing, our method takes
0.02s on average, which is more efficient than the post-
processing of PIE-Net (3.01s). It can be explained by using
masks, which can only choose surface cubes for the calcula-
tion to reduce consumption and make it more efficient than
other approaches.

VCM [5] EC-NET [8] PIE-NET [7] Ours
Clean 0.194 0.128 0.132 0.071

Noise σ = l/4 0.200 0.222 0.289 0.097
σ = l/2 0.270 0.278 0.301 0.110

#Sample
Points

16384 0.185 0.135 0.179 0.095
8192 0.192 0.164 0.238 0.112
4096 0.203 0.212 0.246 0.146

Table 2. Edge estimation errors (HD, the smaller the better) of four
methods on noisy or resampled inputs. l = 2/32 is the edge length
of a cube in grid.



HD Results of Stress Tests. Table 2 shows additional
quantitative results of edge estimation in stress tests. Here
the metric is HD instead of CD used in the main paper.

Ablation Study for Cube Point Choice . We show details
for the discussion of cube point choice. In Dual Contour-
ing [3], the point position in the cube is calculated by mini-
mizing a quadratic error function (QEF) on Hermite data of
the surface, which are intersection points of the surface with
the cube edges and their corresponding normal vectors. Let
p be the point position, it can be calculated by the following
minimization:

p = argmin
x

∑
i

(ni · (x− pi))
2. (1)

where pi is one of the intersection points with the cube edges
and ni is its normal vector. The surface is approximated
as a plane at each intersection point, and the formulation
minimizes all the distances from p to all planes in the sense
of least squares. One natural counterpart for a 3D curve is
to consider the intersection points with cube faces and their
tangent vectors. Similarly, we approximate the curve as a
line at each intersection point pi with the cube face, and
minimize all distances from p to all lines in the sense of
least squares. Let ti be the tangent vector of pi (the direction
does not need to be specified), QEF for the curve can be
formulated as:

min
x,∀αi

∑
i

∥x− pi − αiti∥22 + λ
∑
i

α2
i . (2)

where αi is proposed to enable the problem to be solved by
a linear system and λ is a weight to balance the two terms.
Notice that we only need to solve for x, and the system can
be easily reformed as a linear system of order 3 to solve for
x. However, such a type of point position definition does not
perform well in the curve restoration as shown in our main
paper. Therefore, we finally choose a simple and accurate
definition of the point position, which adopts the midpoint
of the truncated curve inside the cube. See Fig. 5 for a visual
comparison of these two definitions.

Performance in Higher Resolution. To evaluate the per-
formance of NerVE in a higher resolution, we perform ex-
periments using resolution 1283 and compare the results
with lower resolutions, as shown in Table 3. Using reso-
lution 1283 brings more accurate PWL outputs (CD, HD),
with slightly fewer scores of Ro, Po, and Ce. The average
inference times of Ours-323, Ours-643, and Ours-1283 are
0.15, 0.21, and 0.57 seconds, respectively. On the whole, the
performance of NerVE can scale well with the increase of
voxel grid resolutions.

Figure 5. 2D illustration for two types of cube point definitions. (a)
p is obtained by minimizing a QEF. (b) p is obtained by taking the
midpoint of the truncated curve inside the cube.

Ro↑ Po↑ Ce↑ Dp↓ CD↓ HD↓
Reso 323 0.965 0.965 0.940 0.003 0.0012 0.0714
Reso 643 0.958 0.960 0.940 0.001 0.0009 0.0523
Reso 1283 0.945 0.947 0.914 0.0005 0.0008 0.0484

Table 3. NerVE performance in different resolutions.

Ablation on Choice of k in Point Encoder. We choose
k = 8 empirically based on the experiments of resolution
323. For the higher resolution 643, using a larger k may im-
prove the accuracy but incur much more calculation cost, as
shown in Table 4. It is a trade-off of accuracy and efficiency
to apply k = 8 in our experiments.

323, k = 4 323, k = 8 323, k = 16 643, k = 4 643, k = 8 643, k = 16
CD↓ 0.0017 0.0012 0.0012 0.0015 0.0009 0.0008
HD↓ 0.0833 0.0714 0.0669 0.0680 0.0523 0.0491

Table 4. Ablation study on choices of k in the point encoder.

Ablation on Using PointNet++ or 3DCNN Features. We
conducted an ablation study with or without using Point-
Net++ and 3DCNN features. The results of the network
predictions and the PWL curves are reported in Table 5.
As shown, both the PointNet++ and 3DCNN features can
promote the performance of NerVE.

Ro↑ Po↑ Ce↑ Dp↓ CD↓ HD↓
wo PointNet++ 0.9358 0.9494 0.8517 0.0041 0.0025 0.0982
wo 3DCNN 0.9383 0.9460 0.9127 0.0040 0.0020 0.0942
Ours 0.9649 0.9650 0.9437 0.0030 0.0012 0.0714

Table 5. Ablation study on using PointNet++ and 3DCNN blocks.

Ablation Study on Post-processing. The quantitative re-
sults of parametric curves with/without post-processing
are CD: 0.008/0.067, HD: 0.224/0.225. Thus, the post-
processing is necessary numerically for better parametric
extraction.

Ablation Study on data splits. Our experiments are all
based on the same random split. Here, we test on other two
different random splits with resolution 323, the CD results



Figure 6. More results of our method. The last row shows the predicted results of our method on 4 complicated cases.

are 0.0013 and 0.0016 (the number in our main paper is
0.0012). As shown, the differences are insignificant.

More Results. More results of our method are shown in
Fig. 6. Our method can produce reasonable results even for
complicated cases, as shown in the last row of Fig. 6.

References
[1] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser,

and Hao Zhang. Neural dual contouring. arXiv preprint
arXiv:2202.01999, 2022. 1

[2] Andreas Fabri and Sylvain Pion. Cgal: The computational
geometry algorithms library. In Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geo-
graphic information systems, pages 538–539, 2009. 3

[3] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual
contouring of hermite data. In Proceedings of the 29th annual

conference on Computer graphics and interactive techniques,
pages 339–346, 2002. 4

[4] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 9601–9611, 2019. 3

[5] Quentin Mérigot, Maks Ovsjanikov, and Leonidas J Guibas.
Voronoi-based curvature and feature estimation from point
clouds. IEEE Transactions on Visualization and Computer
Graphics, 17(6):743–756, 2010. 3

[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. Advances in neural information processing
systems, 30, 2017. 1

[7] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi,
Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. Pie-net: Para-
metric inference of point cloud edges. Advances in neural



information processing systems, 33:20167–20178, 2020. 3
[8] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Ec-net: an edge-aware point set consolida-
tion network. In Proceedings of the European conference on
computer vision (ECCV), pages 386–402, 2018. 3


	. Details of Method
	. Network Details
	. Parametric Curve Extraction

	. Details of Dataset
	. More Details of Experiments

