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A. More Details on Experimental Setups
A.1. Experiments on CIFAR-10 and CIFAR-100

Auxiliary datasets. We use 300K Random Images [6] as the auxiliary outlier dataset for experiments
with CIFAR-10 and CIFAR-100. Specifically, 300K Random Images is a cleaned and debiased dataset
with 300K natural images. In this dataset, images that belong to CIFAR classes are removed so that in-
distribution (ID) training set and outlier dataset are disjoint. In Sec. 5.2 and Fig. 8, we conduct exper-
iments on CIFAR-10 to study the effectiveness of other outlier datasets, i.e., Gaussian, Rademacher,
Blob, CIFAR-100. Following [13], Gaussian noises are sampled from an isotropic Gaussian distribu-
tion. Rademacher noises are sampled from a symmetric Rademacher distribution. B1ob noises consist of
algorithmically generated amorphous shapes with definite edges.

Hyperparameters. For OE [6], we set A = 0.5 in Eq. 2 as recommended in the original paper [6]. For
Mixup [16], the coefficient of linear interpolation X is sampled as A ~ Beta(a, a), and we set & = 0.3 as
recommended in the original paper [16]. For RegMixup [11], we set a = 10 as recommended in the original
paper [11]. For our OpenMix, the A in Eq. 4 is sampled as A ~ Beta(«, «), and we set « = 10 in our
experiments. The v in Eq. 5 is set as 1.

A.2. Experiments on ImageNet

For experiments on ImageNet, the backbone is ResNet-50 [2] and we perform automatic mixed precision
to accelerate the training by using the open-sourced code at https://github.com/NVIDIA/apex/
tree/master/examples/imagenet. For each experiment, we train 90 epochs. Three settings which
consist of random 100, 200, and 500 classes from ImageNet are conducted after shuffling the class order
with the fixed random seed 1993. For each experiment, we use another set of disjoint classes from ImageNet
as outliers, and the outlier dataset has the same number of classes as that of training set. The A in Eq. 4 is
sampled as A\ ~ Beta(«, «), and we set « = 10. The  in Eq. 5 is set to be 0.5.

B. Additional Experimental Results
B.1. More results for MisD under distribution shift

Table 1 presents more results of MisD under distribution shift. The models trained on clean datasets (CIFAR-
10 and CIFAR-100) are evaluated on corrupted dataset CIFAR-10/100-C [4]. the corruption dataset contains
copies of the original validation set with 15 types of corruptions of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity, resulting
in 75 distinct corruptions. In Table 1, we can observe that OpenMix performs the best.

B.2. More results for long-tailed MisD

Besides the results in Table. 6, we also compared the MisD performance of our method with TLC [7] under
the same experimental setup. The results of TLC and others are from [7]. As can be observed from Fig. 1,
our method has the best performance, i.e., highest AUROC and lowest FPR95.
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Table 1. MisD performance under distribution shift. The averaged results for 15 kinds of corruption under five different
level perturbation severity are reported.

Method AUROC 1 AURC | FPRY95 | ACC 1
ResNet WRN DenseNet ResNet WRN DenseNet ResNet WRN DenseNet ResNet WRN DenseNet
CIFAR-10-C

MSP[5] 7992 8334 81.82 154.58 120.36 154.72 7023 64.48 68.56 7227 7557 71.08
CRL [10] 82.57 85.86 83.86 143.19 100.27 13546 6826 6286 6693  71.19 7624 71.82
OpenMix 84.98 90.38 85.62 6551 27.78 71.86 62.11 48.07 60.65 82.03 88.33 81.38

CIFAR-100-C

MSP [5] 7739 79.70 75.86 356.87 299.82 37637 76.70 72777 7688 4527 5138 4492
CRL [10] 79.00 80.71 78.15 34048 273.60 346.73 74.68 71.13 7525 4591 5338 46.56
OpenMix 78.56 84.05 79.00 303.82 176.15 299.71 74.61 66.24 7445  50.61 62.09 51.29
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Figure 1. More comparison on long-tailed MisD.

Table 2. OOD detection performance. All values are percentages and are averaged over six OOD test datasets.

Method FPRYS | AUROC 1 AUPR 1
ResNet WRN DenseNet ResNet WRN DenseNet ResNet WRN DenseNet
ID: CIFAR-10

MSP [5] 51.69 40.83  48.60 89.85 9232 9155 97.42 97.93 98.11
LogitNorm [14] 29.72 12.97 19.72 9429 9747  96.19 98.70  99.47  99.11
ODIN [8] 35.04 2694  30.67 91.09 93.35 93.40 97.47 9798  98.30
Energy [9] 33.98 2548 30.01 91.15 93.58 9345 97.49 98.00  98.35
MaxLogit [3] 34.61 2672  30.99 91.13 93.14 9344 97.46 97.78  98.35
OE [6] 528 349 5.25 98.04 98.59  98.20 99.55 99.71  99.62
CRL [10] 51.18 40.83  47.28 91.21 93.67 9237 98.11 98.67 98.35
FMFP [17] 39.50 26.83 35.12 93.83 96.22  94.88 98.73  99.23 98.95

OpenMix (ours) 39.72 16.86  32.75 9322 9692  94.85 98.46 99.34  98.84

ID: CIFAR-100

MSP [5] 81.68 77.53  77.03 7421 7796  76.79 9334 9436  93.94
LogitNorm [14] 63.49 5738  61.56 82.50 86.60  82.10 9543 96.80  95.16
ODIN [8] 7430 76.03  69.44 76.55 79.57  80.53 93.54 9459 9478
Energy [9] 7442 7493  68.36 76.43 79.89  80.87 93.59 94.66  94.86
MaxLogit [3] 74.45 7527  69.85 76.61 79.75  80.48 93.66 94.67  94.77
OE [6] 59.85 49.02 53.03 86.33 90.07 88.51 96.47 97.67 97.25
CRL [10] 81.67 79.08  75.77 7272 7681  76.41 92.69 9422  93.85
FMFP [17] 80.19 7098  72.87 7292 81.54  77.56 9294 9571  94.19

OpenMix (ours) 74.66 68.87  66.63 7595 84.88  81.23 93.56  96.55  95.30

B.3. More results for OOD detection

Table 2 presents the detailed results of OOD detection performance on CIFAR-10 and CIFAR-100. From the
results, we show that our method can yield strong OOD detection performance. In addition, since Openmix
is a training-time method, it can combine with any other post-processing OOD detection methods such as
ODIN, Energy and MaxLogit to get higher OOD detection performance.
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Figure 2. Beta(a, o) pdf for varying a. Table 3. Ablation study on .

B.4. Ablation study on different distribution of interpolation coefficient \ ~ Beta(a, )

We conduct experiments to compare the effectiveness of different interpolation coefficient, which is drawn
from the Beta distribution (refer Fig. 2). Specifically, high values of o would encourage A =~ 0.5. As shown
in Table 3, large values of « (strong interpolations) lead to good performance. Since we aim to improve the
exposure of low density regions, the interpolation should be strong to yield low confidence samples.

B.5. Using Cutmix to transform outliers in OpenMix

In our main manuscript, linear interpolation is applied to transform the outliers. An alternative way is to
use non-linear strategy like CutMix [15]. From the results in Table 4, we observe that Cutmix based outlier
transformation can yield comparable performance as mixup based.

Table 4. Comparison between linear (Mixup) and non-linear (Cutmix) based outlier transformation.

Network Method CIFAR-10 CIFAR-100
AURC| AUROCT?T FPRY5 | ACC 1 AURC| AUROCT FPRY5 | ACC T
MSP [icLr17) [5] 9.52+0.49 90.13+0.46 43.334+0.59 94.30+0.06 89.05+1.39 84.91+0.13 65.65+1.72 73.30+0.25
ResNet110 OpenMix (w/Mixup) 6.31+0.32 92.09+0.36 39.63+2.36 94.98+0.20 73.84+1.31 85.83+0.22 64.22+1.35 75.77+0.35
OpenMix (w/CutMix) 6.74+1.07 93.45+0.44 36.82+3.65 93.73+0.72 76.28+1.83 86.49+0.17 64.78+0.93 74.15+0.41
MSP [icLr17) [5] 4.76+0.62 93.14+0.38 30.15+1.98 95.914+0.07 46.844+0.90 88.50+0.44 56.64+1.33 80.76+0.18
WRNet OpenMix (w/Mixup) 2.32+0.15 94.81+0.34 22.08+1.86 97.16+0.10 39.61+0.54 89.06+0.11 55.00+1.29 82.63+0.06
OpenMix (w/CutMix) 3.11+0.50 94.14+0.17 28.254+2.25 96.60+0.40 43.22+1.01 89.164+0.16 55.62+1.67 80.94+0.31
MSP [icLr17] [5] 5.66+0.45 93.144+0.65 38.64+4.70 94.78+0.16 66.11£1.56 86.20+0.04 62.79+0.83 76.96+0.20
DenseNet  OpenMix (w/Mixup) 4.68+0.72 93.57+0.81 33.57+3.70 95.51+0.23 53.831+0.93 87.45+0.18 62.22+1.15 78.97+0.31
OpenMix (w/CutMix) 5.44+0.50 93.80-+£0.13 37.284+2.15 94.48+0.39 68.80+£6.96 86.46+0.57 63.99+2.41 75.92+1.24
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B.6. More results of feature space distance and visualization

In our main manuscript, we only plot the results of FSU due to the space limitation. Here, Fig. 3 plots
the inter-class distance of the deep feature space. As can be observed, the inter-class distance with OE is
observably enlarged, which indicates excessive feature compression and has negative influence for MisD.
Our OpenMix leads to less compact feature distributions. Besides, Fig. 4 presents qualitative visualization to
look at the effectiveness of OpenMix. Compared with MSP and OE, the feature distribution is smoother and
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Figure 4. Qualitative visualization of the deep feature space using TSNE [12].
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the decision boundary is clearer, and the misclassified samples are mostly mapped to low-density regions in
feature distribution.

B.7. Ablation Study of each component in our method

Table 5 presents more results of each component in our method on WRNet and DenseNet.

Table 5. Ablation Study of each component in our method.

Network  Method CIFAR-10 CIFAR-100
AURC AUROC FPR9S ACC AURC AUROC FPRY95 ACC

MSP 952 90.13 4333 9430  89.05 8491 6565 7330

ResNet | *RC 955  91.15 4003 9402 9431 8553 6578 7144
esiet yor 1238 87.13  61.83 9384  99.86 8251 7294 72.62
OpenMix 631  92.09  39.63 9498 7384 8583 6422 7577

MSP 476 9314  30.15 9591 4684 8850  56.64 80.76

wWiNet |+ RC 428 9395 3005 9562 5432 8808  60.17 78.69
+0T 575 9071  49.69 9577 5438 8624 6468 80.12

OpenMix 232 9481 2208 97.16  39.61 89.06 5500 82.63

MSP 566  93.14 3864 9478 6611 8620 6279 76.96
DenseNet * RC 6.04 9307 3755 9456 7073 8678 6436 7521
$ +0T 1046 8776 6285 9429 7692 8409  70.55 75.78

OpenMix  4.68 93.57 33.57 95.51 53.83 87.45 62.22 78.97

C. Additional Analysis
C.1. More insights: Impact of feature space uniformity for OOD detection and MisD

We provide more insights about the connection between feature space uniformity (FSU, refer to Sec. 3.2
for detailed definition) and OOD detection, MisD performance. According to the familiarity hypothesis [1],
the features are less activated for OOD samples from unknown classes than that for ID samples. Therefore,
MisD is more difficult than OOD detection, and the FSU has different impact on those two tasks. In what
follows, we provide more illustration based on Fig. 5. Specifically,

e For OOD detection, at the baseline state (state 0), the OOD distribution has some overlap with
ID distribution. @ When decreasing the FSU, the distribution of known classes is compressed and
the overlap between OOD and ID samples could be reduced (state -1). However, when further
decreasing the FSU, the ID distribution could be much over-compact and the model maps most of
the OOD samples to the ID region (state -2), leading to worse OOD detection performance. @
When increasing the FSU, more OOD samples could be mapped to low density regions (state 1).
However, when further increasing the FSU, the ID distribution would be under-activated (state 2),
leading to worse separation between ID and OOD distribution.

* For MisD, compared with OOD samples, the misclassified samples are ID and closer to the correct
samples. Therefore, MisD performance is more sensitive to the change of FSU. As a result, @ de-
creasing the FSU would easily lead to more overlap between correct and misclassified ID samples
(state -1). To improve the separation, it more helpful to @ increase the FSU (state 1), making
the features be less activated for misclassified samples. However, when further increasing the FSU,
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Figure 5. Ilustration of how the change of FSU affects the OOD detection and MisD performance.

the distribution of correct samples would be under-activated (state 2), leading to worse separation
between correct and wrong data.

In conclusion, both over-compact and over-dispersive feature distributions are harmful for OOD detection
and MisD. To effectively detect OOD and misclassified samples, it is better to increase the FSU to a proper
level. In Fig. 5, the region is good for OOD detection, while the red region is good for MisD. The
common region between the orange and red is desirable for detecting OOD and misclassified samples in
a unified manner. In addition, we compute the FSU of several representative methods (OE [6], MSP [5],
CRL [10], FMFP [17], OpenMix, classAug [18], LogitNorm [14]) and mark the corresponding position in
Fig. 5. The effect of them is consistent with our analysis.

C.2. Theoretical analysis: OpenMix increases the exposure of low density regions

In standard training, with cross-entropy loss and one-hot label, there are few uncertain samples are mapped to
low density regions. An intuitive interpretation of the effectiveness of OpenMix is it increases the exposure of
low density regions in feature space by synthesizing and learning the mixed samples. We provide a theoretical
justification showing that our method can increase the sample density in the original low-density regions.

Suppose we have a known class consisting of samples drawn from probability density function f(x), and
an outlier distribution f,oq(z) that is farther away from f(x). By applying linear interpolation (i.e., Mixup)
between ID distribution f(z) and outlier distribution fo.q(x), we can get a mixed set. Denote fiix(x) the
bimodal distribution that represents the probability density function of mixed samples. With integration
of f(z) and fuix(x), the new data probability density function is denoted as f(z) = 1 (f(z) + fmix(2)).
The following theorem shows that the probability density on the subset S = {z||z7v| > C,z € R} is
enlarged, in which C is a sufficiently large constant and v € R is the certain direction. For example, for the
single dimensional case with variance o2, the density is guaranteed to be enlarged in the set S’ = {xz||z| >
1.50, u = 1}, which is exactly the low-density area for the Guassian distribution.

Theorem C.1. Let f(x) and f,ix(x) be the probability density functions defined as follows,

F@) = 1 "X
VTR T )

and

_ 1 (z = )5z —p) 1 (z — )8 Mz — p)
o) = gy (- 2 )+ st o (- > )

where x = (z1,--- ,14) € R% € R and ¥ are the correspondingly mean vector and positive-definite



covariance matrix. Assume that i = X'/2 i, where ||@|| = 1 can be chosen arbitrary, then , it follows that

f(x) < f(z), forany z € 8" = {z||z"v| > 1.5,0 = Z7V/2}}.

Proof. Denote g(x) = f(x) — f(z), we have

g(z) =

(F) + fuin(@)) = £(2) = 5 (@) = F(2)

1 Ty-1 Ty-1
:W exp (_5625(}> |:exp (—'u2u) (GXp (LCE_IM) + exp (—mE_lu)) _9

N =

In what follows, we show that g(x) > 0 on the region € S’. Firstly, it is trivial to see that g(0) =

2 exp (— u 22_1” ) — 2 < 0. To analyze the property of g(z), we need to analyze the following function:

Ty —1
h(z) =exp (:UTZfl,u) + exp (—xTEflﬂ) — 2exp <N22H>

=exp (x'rifl/zﬂ) + exp <fx7271/2ﬁ> — 2exp (H M)

2

1
=exp (J:TE_UQ;]) + exp (—xTE_l/Qﬂ) — 2exp (2>

Noticing that exp(x) + exp(—2x) is an even function and it is increasing with respect to |z|, thus for h(z),
there exists a positive constant m such that, i(z) > 0 when |z"X~1/2f| > m. We can see that exp (1.5) +
exp (—1.5) — 2exp (1) > 0, which means m > 1.5. That means g(z) > 0 when [z7X1/2f1| > 1.5, thus
we complete the proof. O
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