PMatch: Paired Masked Image Modeling for Dense Geometric Matching ==== Supplementary Material ====

Shengjie Zhu and Xiaoming Liu
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48824
zhusheng@msu.edu, liuxm@cse.msu.edu

Figure 1. Visualization of produced co-planar points in MegaDepth Dataset. The red point is one anchor point \mathbf{p}_{m}, while the green dots are the co-planar pixels among K sampled candidates $\left\{\mathbf{q}_{n}^{m} \mid 1 \leq n \leq K\right\}$, computed following Eqn. 1 .

Production of the indicator matrix \mathcal{O}^{+}. In the main paper Eqn. 14, we utilize an indicator matrix \mathcal{O}^{+}to indicate the co-planar pairs between anchor and candidate points. Given the K anchor points $\left\{\mathbf{p}_{m} \mid 1 \leq m \leq K\right\}$ and $K \times K$ candidate points $\left\{\mathbf{q}_{n}^{m} \mid 1 \leq n \leq K\right\}$, the indicator matrix \mathcal{O}^{+}of size $K \times K$ is computed as:

$$
\mathcal{O}_{m, n}^{+}=1 \quad \text { if }\left\{\begin{array}{l}
1-\arccos \left(\mathbf{n}_{\mathbf{p}_{m}}^{\top} \mathbf{n}_{\mathbf{q}_{n}^{m}}\right)<k_{1} \tag{1}\\
\operatorname{dist}\left(\mathbf{n}_{\mathbf{p}_{m}}, \mathbf{p}_{m}, d_{\mathbf{p}_{m}}, \mathbf{q}_{n}^{m}, d_{\mathbf{q}_{n}^{m}}, \mathbf{K}_{1}\right)<k_{2} \\
\left\|\operatorname{proj}\left(\mathbf{H}_{\mathbf{p}_{m}}^{\top}, \mathbf{q}_{n}^{m}\right)-\mathbf{q}_{n}^{m}\right\|_{2}<k_{3}
\end{array}\right.
$$

The function $\operatorname{dist}(\cdot)$ computes the point-to-plane distance in 3D space. The plane is spanned by the norm $\mathbf{n}_{\mathbf{p}_{m}}$ and the re-projected 3D point at \mathbf{p}_{m}. The function $\operatorname{proj}(\cdot)$ indicates the planar projection under pixel \mathbf{p}_{m} homography matrix $\mathbf{H}_{\mathbf{p}_{\mathrm{m}}}$ (see main paper equation Eqn. 13). The k_{1}, k_{2} and k_{3} are set to $0.002,0.02$, and 1 respectively. We visualize the produced groundtruth co-planar points in Fig. 1.
Additional Visualization. We include additional visualization of the paired MIM pretexting task (Fig. 2) and reconstruction visualization (Fig. 4 and Fig. 3).

References

[1] Zhengqi Li and Noah Snavely. Megadepth: Learning singleview depth prediction from internet photos. In CVPR, 2018. 2

Figure 2. Visual Quality of the paired MIM pretext task. Visualized cases are from the MegaDepth and the ScanNet dataset.

Figure 3. Visual Quality of the Reconstruction on MegaDepth [1].

Figure 4. Visual Quality of the Reconstruction on ScanNet.

